Modeling of Trapped Fields by Stacked (RE)BCO Tape Using Angular Transversal Field Dependence
Stacks of superconducting (RE)BCO tape are gaining popularity as a potential alternative for superconducting bulks for trapped field applications. This is partly due to versatility and uniformity of the starting material, allowing for more deterministic prediction of field profile and magnitude. How...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2016-04, Vol.26 (3), p.1-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stacks of superconducting (RE)BCO tape are gaining popularity as a potential alternative for superconducting bulks for trapped field applications. This is partly due to versatility and uniformity of the starting material, allowing for more deterministic prediction of field profile and magnitude. However, most FEM models of trapped field magnets do not incorporate parameters such as critical current and n-value dependence on the angle of applied magnetic field, leading to only qualitative modeling results. More quantitative results can be obtained from incorporating more data for superconductivity and thermal properties of the material. Such models can be used as a starting point for most geometries and both trapped field and current transport modeling problems. An FEM model of a stack of tapes was constructed using the H formulation, incorporating goniometric critical current and n-value measurements. The modeling results were compared to field cooling experiments for stacks of different heights. The experiment and modeling show good agreement. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2016.2528992 |