A Synchronization Algorithm for Spaceborne/Stationary BiSAR Imaging Based on Contrast Optimization With Direct Signal From Radar Satellite
This paper proposes a synchronization algorithm for bistatic synthetic aperture radar (BiSAR) imaging in a spaceborne/stationary configuration. In real bistatic systems, synchronization errors are generally introduced into the received data. Additionally, the lack of precise imaging parameters, such...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2016-04, Vol.54 (4), p.1977-1989 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a synchronization algorithm for bistatic synthetic aperture radar (BiSAR) imaging in a spaceborne/stationary configuration. In real bistatic systems, synchronization errors are generally introduced into the received data. Additionally, the lack of precise imaging parameters, such as the position of the transmitter and the accurate sampling time, could affect the imaging quality greatly. Fortunately, the image could be well focused by the proposed algorithm in the case of lack of the accurate position of a transmitter and the sampling time. First, a preprocessing step is employed to remove synchronization errors through matching an echo signal with a direct signal. Then, a modified chirp scaling factor containing an error phase term is constructed, and the accurate position of the transmitter and the sampling time can be acquired by the phase extraction of the direct signal and the searching method based on contrast optimization. After that, the corresponding imaging process can be implemented. Finally, the proposed algorithm is validated by the simulation and experimental results, where TerraSAR-X is used as the illuminator. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2015.2493078 |