The Co-Points of Rays are Cut Points of Upper Level Sets for Busemann Functions

We show that the co-rays to a ray in a complete non-compact Finsler manifold contain geodesic segments to upper level sets of Busemann functions. Moreover, we characterise the co-point set to a ray as the cut locus of such level sets. The structure theorem of the co-point set on a surface, namely th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2016-04, Vol.12
1. Verfasser: Sabau, Sorin V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the co-rays to a ray in a complete non-compact Finsler manifold contain geodesic segments to upper level sets of Busemann functions. Moreover, we characterise the co-point set to a ray as the cut locus of such level sets. The structure theorem of the co-point set on a surface, namely that is a local tree, and other properties follow immediately from the known results about the cut locus. We point out that some of our findings, in special the relation of co-point set to the upper lever sets, are new even for Riemannian manifolds. [ProQuest: [...] denotes formulae omitted.]
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2016.036