Interfacial Reactions Between Anorthite (CaAl2Si2O8) and Al 7075 Alloy at 850°C and 1150°C
The present work reports an investigation of the interactions of Al 7075 alloy and anorthite at 850°C (150 h) and 1150°C (24 h). Transmission electron microscopy, electron probe microanalysis, X‐ray diffraction, and scanning electron microscopy coupled with energy‐dispersive spectroscopy were used t...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2016-05, Vol.99 (5), p.1694-1708 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work reports an investigation of the interactions of Al 7075 alloy and anorthite at 850°C (150 h) and 1150°C (24 h). Transmission electron microscopy, electron probe microanalysis, X‐ray diffraction, and scanning electron microscopy coupled with energy‐dispersive spectroscopy were used to identify the mineralogical and microstructural changes at the metal–ceramic interface. At 850°C, the phase formation mechanisms were (a) Si4+–Al3+ interdiffusion between the Al alloy and anorthite to form calcium dialuminate (CA2) and Ca2+–Mg2+ interdiffusion between the Al alloy and calcium dialuminate to form spinel. At 1150°C, spinel + Al2O3 and calcium hexaluminate (CA6) + CA2 were the major and minor phase mixtures, respectively in the corroded area. A thin layer of calcium monoaluminate (CA), gehlenite, and Si was present in the immediate vicinity of anorthite. The early stages of corrosion at 1150°C and 850°C were identical. However, due to thickening of the corroded region (viz., spinel formation) and enhanced evaporation of Mg at the higher temperature, the interdiffusion path evolves from Si4+–Al3+ + Ca2+–Mg2+ to Si4+–Al3+ + Ca2+–Al3+, thus establishing the following phase evolution path at the interface:Anorthite→Gehlenite→CA→CA2→CA6→Al2O3 |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.14091 |