Effect of Al Addition on [omega] Precipitation and Age Hardening of Ti-Al-Mo-Fe Alloys

The effect of Al addition on ω precipitation and age-hardening behavior of Ti-9.2Mo-2Fe and Ti-2Al-9.2Mo-2Fe alloy during aging treatment was investigated. The results showed that athermal and isothermal ω phase formation in Ti-2Al-9.2Mo-2Fe alloy was suppressed to a certain extent due to Al additio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-05, Vol.47 (5), p.2454
Hauptverfasser: Li, Chenglin, Lee, Dong-geun, Mi, Xujun, Ye, Wenjun, Hui, Songxiao, Lee, Yongtai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of Al addition on ω precipitation and age-hardening behavior of Ti-9.2Mo-2Fe and Ti-2Al-9.2Mo-2Fe alloy during aging treatment was investigated. The results showed that athermal and isothermal ω phase formation in Ti-2Al-9.2Mo-2Fe alloy was suppressed to a certain extent due to Al addition. In addition, a small amount of athermal ω phase was observed in the [beta] matrix with a size of about ~5 nm during water quenching from above the [beta] transus temperature for both alloys. Isothermal ω formation was also found during aging at temperatures ranging from 573 K to 773 K (300 °C to 500 °C) in both alloys, although it had a limited time of stability at 773 K (500 °C). The hardening due to isothermal ω precipitation exhibited no over-aging as long as ω phase existed in both alloys, and ω phase played a more important role in hardening than [alpha] phase. And the ω phase in 50 to 100 nm size exhibited the best hardening effect in Ti-9.2Mo-2Fe alloy. Similarly, [alpha] phase with 100 to 200 nm in length showed better hardening effects in Ti-2Al-9.2Mo-2Fe alloy. Both the alloys showed stronger age hardening at an intermediate temperature of 673 K (400 °C) and in the first aging stage at a higher temperature of 773 K (500 °C) due to the sufficiently fine size (50 nm), while they exhibited weaker age hardening at a lower temperature of 573 K (300 °C) and long period aging at a higher temperature of 773 K (500 °C) due to incomplete ω formation and/or coarsening of [alpha] phase. No over or peak aging stage was found at 573 K and 673 K (300 °C and 400 °C) during the aging for 72 hours, while the peak hardness values of both alloys aged at 773 K (500 °C) were obtained in the first stage of aging. The hardness of the alloys was very sensitive to size and volume fraction of ω phase, which depends on aging temperature, time, and composition of the involved alloys.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-016-3386-x