A21 Altered calcium kinetics in skeletal muscle fibres of the R6/2 mouse model of HD

Background and aims Some of the most obvious peripheral tissue changes in Huntington's disease (HD) are found in skeletal muscle. Alterations in morphology, gene expression pattern, energy metabolism and differentiation have been described. However, it is still an open question to what extent t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurology, neurosurgery and psychiatry neurosurgery and psychiatry, 2010-09, Vol.81 (Suppl 1), p.A7-A7
Hauptverfasser: Braubach, P, Andronache, Z, Riecker, A, Lindenberg, K S, Landwehrmeyer, G B, Lehmann-Horn, F, Melzer, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and aims Some of the most obvious peripheral tissue changes in Huntington's disease (HD) are found in skeletal muscle. Alterations in morphology, gene expression pattern, energy metabolism and differentiation have been described. However, it is still an open question to what extent these changes reflect cell autonomous effect of mutant huntingtin. As yet, surprisingly little information is available about contractile performance and excitation–contraction coupling in HD muscle. Recently we found that isometric contraction of fast twitch muscle in the R6/2 mouse model of HD exhibits significantly slower kinetics than WT muscle. To investigate the potential causes of the changes in muscle contraction we studied the kinetics of action potential triggered intracellular Ca2+ transients. Methods Enzymatically dissociated interosseus muscle fibres of male R6/2 (11–13 weeks old) exhibiting disease symptoms and of age matched WT mice were primary cultured up to 2 days. Ca2+-transients were elicited by extracellular electrical stimulation. Ca2+ dependent fluorescence signals of Fura2-AM loaded cells exhibiting all or none responses were analysed. A kinetic model was applied to estimate Ca2+ removal and Ca2+ release. Results In R6/2 fibres we observed significantly slower relaxation kinetics of Ca2+ transients elicited by single stimuli compared with WT. The mean time constant of relaxation was 31 ms±1 ms (SEM) for WT (n=25) and 53 ms±4 ms for R6/2 (n=73, p
ISSN:0022-3050
1468-330X
DOI:10.1136/jnnp.2010.222570.21