Challenges Facing PFC of a Single-Phase On-Board Charger for Electric Vehicles Based on a Current Source Active Rectifier Input Stage
This paper aims to study the power factor (PF) correction scheme for a single-phase on-board charger of electric vehicles. The topology is based on a unidirectional current source active rectifier (CSAR) consisting of four insulated-gate bipolar transistors in series with four diodes followed by a b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2016-09, Vol.31 (9), p.6192-6202 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to study the power factor (PF) correction scheme for a single-phase on-board charger of electric vehicles. The topology is based on a unidirectional current source active rectifier (CSAR) consisting of four insulated-gate bipolar transistors in series with four diodes followed by a boost converter. Buck-type rectifiers inject low-order input current harmonics into the ac mains. Thus, an inductor-capacitor (LC) input filter is employed. The capacitor's reactive energy results in a leading grid current. In order to achieve a unity displacement power factor, a phase shift control is implemented. However, the LC filter is prone to series and parallel resonances coming from the grid disturbances and the converter harmonics, respectively. Therefore, the phase shift control strategy combined with the topology of the CSAR results in a periodical resonance of the input filter. This phenomenon is studied in detail. In order to reduce the grid current's distortion level, an active damping control with resonance frequency tracking that achieves a good PF while meeting the IEC's international standards on harmonic current emissions is presented. An experimental test bench is developed to validate the simulations' theoretical findings. Compliance with the standards is achieved and system limitations are discussed. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2015.2500958 |