Robust Future Changes in Temperature Variability under Greenhouse Gas Forcing and the Relationship with Thermal Advection

Recent temperature extremes have highlighted the importance of assessing projected changes in the variability of temperature as well as the mean. A large fraction of present-day temperature variance is associated with thermal advection, as anomalous winds blow across the land–sea temperature contras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2016-03, Vol.29 (6), p.2221-2236
Hauptverfasser: Holmes, Caroline R., Woollings, Tim, Hawkins, Ed, de Vries, Hylke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent temperature extremes have highlighted the importance of assessing projected changes in the variability of temperature as well as the mean. A large fraction of present-day temperature variance is associated with thermal advection, as anomalous winds blow across the land–sea temperature contrast, for instance. Models project robust heterogeneity in the twenty-first-century warming pattern under greenhouse gas forcing, resulting in land–sea temperature contrasts increasing in summer and decreasing in winter and the pole-to-equator temperature gradient weakening in winter. In this study, future changes in monthly variability of near-surface temperature in the 17-member ensemble ESSENCE (Ensemble Simulations of Extreme Weather Events under Nonlinear Climate Change) are assessed. In winter, variability in midlatitudes decreases whereas in very high latitudes and the tropics it increases. In summer, variability increases overmost land areas and in the tropics, with decreasing variability in high latitude oceans. Multiple regression analysis is used to determine the contributions to variability changes from changing temperature gradients and circulation patterns. Thermal advection is found to be of particular importance in the Northern Hemisphere winter midlatitudes, where the change in mean state temperature gradients alone could account for over half the projected changes. Changes in thermal advection are also found to be important in summer in Europe and coastal areas, although less so than in winter. Comparison with CMIP5 data shows that the midlatitude changes in variability are robust across large regions, particularly high northern latitudes in winter and middle northern latitudes in summer.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-14-00735.1