Phosphate Adsorption onto Granular-Acid-Activated-Neutralized Red Mud: Parameter Optimization, Kinetics, Isotherms, and Mechanism Analysis

Powdered-acid-activated-neutralized red mud (Aan-RM), the chemico-physically modified product of red mud, was for the first time employed with hydroxypropyl methylcellulose and powdered straw as the main ingredients for granular Aan-RM production for phosphate removal. In order to better understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2015-09, Vol.226 (9), p.93, Article 306
Hauptverfasser: Ye, Jie, Cong, Xiangna, Zhang, Panyue, Hoffmann, Erhard, Zeng, Guangming, Wu, Yan, Zhang, Haibo, Fan, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Powdered-acid-activated-neutralized red mud (Aan-RM), the chemico-physically modified product of red mud, was for the first time employed with hydroxypropyl methylcellulose and powdered straw as the main ingredients for granular Aan-RM production for phosphate removal. In order to better understand the phosphate adsorption characteristics of granular Aan-RM, the influence of operational parameters on the performance of granular Aan-RM and the possible adsorption mechanisms involved were investigated. The results demonstrated that the adsorbent dosage, adsorption temperature, and initial solution pH influenced the adsorption performance of granular Aan-RM significantly. The maximum phosphate adsorption capacity of granular Aan-RM reached 153.227 mg/g with the granular Aan-RM dosage of 3.0 g/L, adsorption temperature of 40 °C, and initial solution pH of 6.0. The whole adsorption process was well described by n th-order kinetic model and Langmuir–Freundlich isotherm. Meanwhile, X-ray photoelectron spectroscopy (XPS) analysis of P 2p peak on granular Aan-RM after phosphate adsorption demonstrated that 79.01 % of the phosphate was adsorbed through precipitation and ion exchange mechanisms with strong chemical bonds, and 20.99 % of the phosphate was adsorbed through surface deposition mechanism with weak chemical bonds.
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-015-2577-1