Travelling waves in models of neural tissue: from localised structures to periodic waves

Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ nonlinear biomedical physics 2014-12, Vol.2 (1), p.1, Article 3
Hauptverfasser: Meijer, Hil GE, Coombes, Stephen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title EPJ nonlinear biomedical physics
container_volume 2
creator Meijer, Hil GE
Coombes, Stephen
description Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength we unravel the organizing centers of the bifurcation diagram for fronts and pulses, with a mixture of exact analysis for a Heaviside firing rate function and novel numerical schemes otherwise. These schemes, for non-local models with space-dependent delays, further allow for the construction and continuation of periodic waves. We use them to construct the dispersion curve - wave speed as a function of period - and find that they can be oscillatory and multi-valued, suggesting bistability of periodic waves. A kinematic theory predicts the onset of wave instabilities at stationary points in the dispersion curve, leading to period doubling behaviour, and is confirmed with direct numerical simulations. We end with a discussion of how the construction of dispersion curves may allow a useful classification scheme of neural field models for epileptic waves. PACS codes Primary 87.19.lj; 87.19.le; 87.19.lq; 87.19.lf
doi_str_mv 10.1140/epjnbp16
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1774923448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3993302891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-4e7a752fffbadde703f8b736b8e1b383c3958b438c4e30351c4e79d7b69d24763</originalsourceid><addsrcrecordid>eNpNkEtLxDAUhYMoOIwD_oSAGzfVpEmb1J0MvmDAzQjuSh43kiHT1KRV_PdGRsHV-RbnnHs5CJ1TckUpJ9cw7gY90vYILWraNRUhRB7_41O0ynlXiLK6Ya1YoNdtUh8Qgh_e8GehjP2A99FCyDg6PMCcVMCTz3mGG-xS3OMQjQo-g8V5SrOZ5lRSU8QjJB-tN4eeM3TiVMiw-tUlerm_264fq83zw9P6dlOZ8tVUcRBKNLVzTitrQRDmpBas1RKoZpIZ1jVScyYNB0ZYQ4uKzgrddrbmomVLdHHoHVN8nyFP_S7OaSgneyoE72rGuSyuy4PLpJhzAtePye9V-uop6X-m6_-mY9-R1WK_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774923448</pqid></control><display><type>article</type><title>Travelling waves in models of neural tissue: from localised structures to periodic waves</title><source>Springer Nature OA Free Journals</source><source>EDP Open</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Meijer, Hil GE ; Coombes, Stephen</creator><creatorcontrib>Meijer, Hil GE ; Coombes, Stephen</creatorcontrib><description>Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength we unravel the organizing centers of the bifurcation diagram for fronts and pulses, with a mixture of exact analysis for a Heaviside firing rate function and novel numerical schemes otherwise. These schemes, for non-local models with space-dependent delays, further allow for the construction and continuation of periodic waves. We use them to construct the dispersion curve - wave speed as a function of period - and find that they can be oscillatory and multi-valued, suggesting bistability of periodic waves. A kinematic theory predicts the onset of wave instabilities at stationary points in the dispersion curve, leading to period doubling behaviour, and is confirmed with direct numerical simulations. We end with a discussion of how the construction of dispersion curves may allow a useful classification scheme of neural field models for epileptic waves. PACS codes Primary 87.19.lj; 87.19.le; 87.19.lq; 87.19.lf</description><identifier>ISSN: 2195-0008</identifier><identifier>EISSN: 2195-0008</identifier><identifier>DOI: 10.1140/epjnbp16</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><ispartof>EPJ nonlinear biomedical physics, 2014-12, Vol.2 (1), p.1, Article 3</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-4e7a752fffbadde703f8b736b8e1b383c3958b438c4e30351c4e79d7b69d24763</citedby><cites>FETCH-LOGICAL-c219t-4e7a752fffbadde703f8b736b8e1b383c3958b438c4e30351c4e79d7b69d24763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meijer, Hil GE</creatorcontrib><creatorcontrib>Coombes, Stephen</creatorcontrib><title>Travelling waves in models of neural tissue: from localised structures to periodic waves</title><title>EPJ nonlinear biomedical physics</title><description>Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength we unravel the organizing centers of the bifurcation diagram for fronts and pulses, with a mixture of exact analysis for a Heaviside firing rate function and novel numerical schemes otherwise. These schemes, for non-local models with space-dependent delays, further allow for the construction and continuation of periodic waves. We use them to construct the dispersion curve - wave speed as a function of period - and find that they can be oscillatory and multi-valued, suggesting bistability of periodic waves. A kinematic theory predicts the onset of wave instabilities at stationary points in the dispersion curve, leading to period doubling behaviour, and is confirmed with direct numerical simulations. We end with a discussion of how the construction of dispersion curves may allow a useful classification scheme of neural field models for epileptic waves. PACS codes Primary 87.19.lj; 87.19.le; 87.19.lq; 87.19.lf</description><issn>2195-0008</issn><issn>2195-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEtLxDAUhYMoOIwD_oSAGzfVpEmb1J0MvmDAzQjuSh43kiHT1KRV_PdGRsHV-RbnnHs5CJ1TckUpJ9cw7gY90vYILWraNRUhRB7_41O0ynlXiLK6Ya1YoNdtUh8Qgh_e8GehjP2A99FCyDg6PMCcVMCTz3mGG-xS3OMQjQo-g8V5SrOZ5lRSU8QjJB-tN4eeM3TiVMiw-tUlerm_264fq83zw9P6dlOZ8tVUcRBKNLVzTitrQRDmpBas1RKoZpIZ1jVScyYNB0ZYQ4uKzgrddrbmomVLdHHoHVN8nyFP_S7OaSgneyoE72rGuSyuy4PLpJhzAtePye9V-uop6X-m6_-mY9-R1WK_</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Meijer, Hil GE</creator><creator>Coombes, Stephen</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141201</creationdate><title>Travelling waves in models of neural tissue: from localised structures to periodic waves</title><author>Meijer, Hil GE ; Coombes, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-4e7a752fffbadde703f8b736b8e1b383c3958b438c4e30351c4e79d7b69d24763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meijer, Hil GE</creatorcontrib><creatorcontrib>Coombes, Stephen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>EPJ nonlinear biomedical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meijer, Hil GE</au><au>Coombes, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travelling waves in models of neural tissue: from localised structures to periodic waves</atitle><jtitle>EPJ nonlinear biomedical physics</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>2</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>3</artnum><issn>2195-0008</issn><eissn>2195-0008</eissn><abstract>Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength we unravel the organizing centers of the bifurcation diagram for fronts and pulses, with a mixture of exact analysis for a Heaviside firing rate function and novel numerical schemes otherwise. These schemes, for non-local models with space-dependent delays, further allow for the construction and continuation of periodic waves. We use them to construct the dispersion curve - wave speed as a function of period - and find that they can be oscillatory and multi-valued, suggesting bistability of periodic waves. A kinematic theory predicts the onset of wave instabilities at stationary points in the dispersion curve, leading to period doubling behaviour, and is confirmed with direct numerical simulations. We end with a discussion of how the construction of dispersion curves may allow a useful classification scheme of neural field models for epileptic waves. PACS codes Primary 87.19.lj; 87.19.le; 87.19.lq; 87.19.lf</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1140/epjnbp16</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-0008
ispartof EPJ nonlinear biomedical physics, 2014-12, Vol.2 (1), p.1, Article 3
issn 2195-0008
2195-0008
language eng
recordid cdi_proquest_journals_1774923448
source Springer Nature OA Free Journals; EDP Open; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Travelling waves in models of neural tissue: from localised structures to periodic waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travelling%20waves%20in%20models%20of%20neural%20tissue:%20from%20localised%20structures%20to%20periodic%20waves&rft.jtitle=EPJ%20nonlinear%20biomedical%20physics&rft.au=Meijer,%20Hil%20GE&rft.date=2014-12-01&rft.volume=2&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=3&rft.issn=2195-0008&rft.eissn=2195-0008&rft_id=info:doi/10.1140/epjnbp16&rft_dat=%3Cproquest_cross%3E3993302891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774923448&rft_id=info:pmid/&rfr_iscdi=true