Travelling waves in models of neural tissue: from localised structures to periodic waves

Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ nonlinear biomedical physics 2014-12, Vol.2 (1), p.1, Article 3
Hauptverfasser: Meijer, Hil GE, Coombes, Stephen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We consider travelling waves (fronts, pulses and periodics) in spatially extended one dimensional neural field models. We demonstrate for an excitatory field with linear adaptation that, in addition to an expected stable pulse solution, a stable anti-pulse can exist. Varying the adaptation strength we unravel the organizing centers of the bifurcation diagram for fronts and pulses, with a mixture of exact analysis for a Heaviside firing rate function and novel numerical schemes otherwise. These schemes, for non-local models with space-dependent delays, further allow for the construction and continuation of periodic waves. We use them to construct the dispersion curve - wave speed as a function of period - and find that they can be oscillatory and multi-valued, suggesting bistability of periodic waves. A kinematic theory predicts the onset of wave instabilities at stationary points in the dispersion curve, leading to period doubling behaviour, and is confirmed with direct numerical simulations. We end with a discussion of how the construction of dispersion curves may allow a useful classification scheme of neural field models for epileptic waves. PACS codes Primary 87.19.lj; 87.19.le; 87.19.lq; 87.19.lf
ISSN:2195-0008
2195-0008
DOI:10.1140/epjnbp16