Combined action of the major secreted exo‐ and endopolygalacturonases is required for full virulence of Fusarium oxysporum

The genome of the tomato pathogen Fusarium oxysporum f. sp. lycopersici encodes eight different polygalacturonases (PGs): four endoPGs and four exoPGs. Quantitative real‐time reverse transcription‐polymerase chain reaction (RT‐PCR) revealed that endoPGs pg1 and pg5 and exoPGs pgx4 and pgx6 are expre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2016-04, Vol.17 (3), p.339-353
Hauptverfasser: Bravo Ruiz, Gustavo, Di Pietro, Antonio, Roncero, M. Isabel G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The genome of the tomato pathogen Fusarium oxysporum f. sp. lycopersici encodes eight different polygalacturonases (PGs): four endoPGs and four exoPGs. Quantitative real‐time reverse transcription‐polymerase chain reaction (RT‐PCR) revealed that endoPGs pg1 and pg5 and exoPGs pgx4 and pgx6 are expressed at significant levels during growth on citrus pectin, polygalacturonic acid or the monomer galacturonic acid, as well as during the infection of tomato plants. The remaining PG genes exhibit low expression levels under all the conditions tested. Secreted PG activity was decreased significantly during growth on pectin in the single deletion mutants lacking either pg1 or pgx6, as well as in the double mutant. Although the single deletion mutants did not display a significant virulence reduction on tomato plants, the Δpg1Δpgx6 double mutant was significantly attenuated in virulence. The combined action of exoPGs and endoPGs is thus essential for plant infection by the vascular wilt fungus F. oxysporum.
ISSN:1464-6722
1364-3703
DOI:10.1111/mpp.12283