Riemann hypothesis for period polynomials of modular forms

The period polynomial rf (z) for an even weight k ≥ 4 newform f ∈ Sk (Γ₀(N)) is the generating function for the critical values of L(f, s). It has a functional equation relating rf (z) to r f ( − 1 N z ) . We prove the Riemann hypothesis for these polynomials: that the zeros of rf (z) lie on the cir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (10), p.2603-2608
Hauptverfasser: Jin, Seokho, Ma, Wenjun, Ono, Ken, Soundararajan, Kannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The period polynomial rf (z) for an even weight k ≥ 4 newform f ∈ Sk (Γ₀(N)) is the generating function for the critical values of L(f, s). It has a functional equation relating rf (z) to r f ( − 1 N z ) . We prove the Riemann hypothesis for these polynomials: that the zeros of rf (z) lie on the circle | z | = 1 / N . We prove that these zeros are equidistributed when either k or N is large.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1600569113