Riemann hypothesis for period polynomials of modular forms
The period polynomial rf (z) for an even weight k ≥ 4 newform f ∈ Sk (Γ₀(N)) is the generating function for the critical values of L(f, s). It has a functional equation relating rf (z) to r f ( − 1 N z ) . We prove the Riemann hypothesis for these polynomials: that the zeros of rf (z) lie on the cir...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (10), p.2603-2608 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The period polynomial rf
(z) for an even weight k ≥ 4 newform f ∈ Sk
(Γ₀(N)) is the generating function for the critical values of L(f, s). It has a functional equation relating rf
(z) to
r
f
(
−
1
N
z
)
. We prove the Riemann hypothesis for these polynomials: that the zeros of rf
(z) lie on the circle
|
z
|
=
1
/
N
. We prove that these zeros are equidistributed when either k or N is large. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1600569113 |