Physiognomy and timing of metasomatism in the southern Vourinos ultramafic suite, NW Greece: a chronicle of consecutive episodes of melt extraction and stagnation in the Neotethyan lithospheric mantle

The southern Vourinos massif, located in the Hellenides orogenic belt, forms part of the mantle section of the homonymous Neotethyan ophiolite complex in the NW Greek mainland. The southern domain of the massif is comprised voluminous and strained peridotite outcrops with variable pyroxene and olivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of earth sciences : Geologische Rundschau 2016-04, Vol.105 (3), p.983-1013
1. Verfasser: Kapsiotis, Argyrios N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The southern Vourinos massif, located in the Hellenides orogenic belt, forms part of the mantle section of the homonymous Neotethyan ophiolite complex in the NW Greek mainland. The southern domain of the massif is comprised voluminous and strained peridotite outcrops with variable pyroxene and olivine modal abundances, ranging from harzburgite (sensu stricto) to olivine-rich harzburgite and fine- to coarse-grained dunite. These peridotites are intruded by a complex network of undeformed websterite to olivine-rich websterite dykes. The peridotite lithologies are characterized by high Cr# [=Cr/(Cr + Al)] values in Cr-spinel (0.54–0.80), elevated Mg# [=Mg/(Mg + Fe 2+ )] ratios in olivine (0.91–0.94), poor Al 2 O 3 content in clinopyroxene (up to 1.85 wt%) and very low bulk-rock abundances of Al 2 O 3 (up to 0.66 wt%), CaO (up to 0.84 wt%), V (up to 45 ppm), Sc (up to 11 ppm) and REE, which are suggestive of their strongly depleted nature. They also display a wide range of f O 2 values that vary between the fayalite–magnetite–quartz (FMQ-2) and FMQ+1 buffers, signifying their genesis under anoxic to oxidizing conditions. Simple batch and fractional melting models cannot satisfactorily explain their ultradepleted composition, whereas whole-rock Ni/Yb versus Yb systematics can be simulated by up to 27 % closed-system, non-modal, dynamic melting of a primitive mantle source, implying their multifarious origin in a progressively changing, in space and time, geotectonic setting. Chromian spinel chemistry (Cr# vs. TiO 2 ) provides evidence for two consecutive melt–peridotite interaction events pertaining to patent metasomatism. The first incident is related to the release of IAT melts from the deep parts of the southern Vourinos mantle segment, which reacted with harzburgites transforming them into olivine-rich harzburgites and replacive dunites, whereas mixing of different pulses of IAT melts with distinct SiO 2 activities generated heterogeneously deformed, cumulitic dunites. The second event is linked to the genesis of MORB/IAT magmas that originally invaded harzburgites. The MORB/IAT melts, although intensely reactive at the stage of harzburgite impregnation, lost their ability to react and stagnated in the peridotite groundmass as they approached the conceivable boundary with olivine-rich harzburgite. Microtextural observations and compositional data support that the interstitial, unstrained clinopyroxene ± olivine aggregates recognized in the harzburgite varie
ISSN:1437-3254
1437-3262
DOI:10.1007/s00531-015-1205-z