Probabilistic load flow evaluation considering correlated input random variables

Summary Probabilistic load flow (PLF) is an efficient tool to assess the performance of a power network considering random variables. In this paper, an improved Latin hypercube sampling (LHS) is proposed to solve PLF considering correlated input random variables. The permutation of samples in LHS is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions on electrical energy systems 2016-03, Vol.26 (3), p.555-572
Hauptverfasser: Xu, Xiaoyuan, Yan, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Probabilistic load flow (PLF) is an efficient tool to assess the performance of a power network considering random variables. In this paper, an improved Latin hypercube sampling (LHS) is proposed to solve PLF considering correlated input random variables. The permutation of samples in LHS is treated as a combinatorial optimization problem and handled by a designed genetic algorithm combined with local search (GALS). The developed method is flexible to different measures of dependence and can tackle non‐positive definite correlation matrices. Because of the non‐normal distributions of output random variables, kernel density estimation (KDE) is used to estimate probability distributions of output data, and different bandwidth selection methods are compared in calculating the bandwidth of KDE. The simulation results of the modified Institute of Electrical and Electronics Engineers (IEEE) 30‐bus system and IEEE 118‐bus system demonstrate the superiority of the proposed method in solving PLF with dependent random variables. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:2050-7038
2050-7038
DOI:10.1002/etep.2094