Non-covalently Functionalized Fluorescent Carbon Nanotubes: A Supramolecular Approach of Selective Zinc Ions Sensing in Living Cells
A fluorescent cyclodextrin/carbon nanotube assembly was easily constructed through the non-covalent attach- ment of adamantanylpyrene on carbon nanotube and the following association of cyclodextrin derivative bearing fluorescent substituent, and its structure was fully characterized by UV/Vis/NIR s...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemistry 2012-09, Vol.30 (9), p.1948-1952 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fluorescent cyclodextrin/carbon nanotube assembly was easily constructed through the non-covalent attach- ment of adamantanylpyrene on carbon nanotube and the following association of cyclodextrin derivative bearing fluorescent substituent, and its structure was fully characterized by UV/Vis/NIR spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and atomic force microscopy. Fluorescence spectroscopic and fluorescence microscopic studies showed that the resultant non-covalently functionalized fluo- rescent nanotube could be used as a highly selective fluorescent probe for Zn2+ in both water and living cells. Without carbon nanotube, the fluorescence probe was unable to enter the cell but only anchored on the cell mem- brane. This approach will overcome the disadvantage of many spectral sensors that are unable to enter living cells and greatly improve the application of naotube-related supramolecular architecture in nanoscience and technology. |
---|---|
ISSN: | 1001-604X 1614-7065 |
DOI: | 10.1002/cjoc.201200543 |