Titanium-Catalyzed Vinylic and Allylic CF Bond Activation--Scope, Limitations and Mechanistic Insight
The hydrodefluorination (HDF) of fluoroalkenes in the presence of a variety of titanium catalysts was studied with respect to scope, selectivity, and mechanism. Optimization revealed that the catalyst requires low steric bulk and high electron density; secondary silanes serve as the preferred hydrid...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2012-08, Vol.18 (34), p.10701 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydrodefluorination (HDF) of fluoroalkenes in the presence of a variety of titanium catalysts was studied with respect to scope, selectivity, and mechanism. Optimization revealed that the catalyst requires low steric bulk and high electron density; secondary silanes serve as the preferred hydride source. A broad range of substrates yield partially fluorinated alkenes, such as previously unknown (Z)-1,2-(difluorovinyl)ferrocene. Mechanistic studies indicate a titanium(III) hydride as the active species, which forms a titanium(III) fluoride by H/F exchange with the substrate. The HDF step can follow both an insertion/elimination and a σ-bond metathesis mechanism; the E/Z selectivity is controlled by the substrate. The catalysts' ineffieciency towards fluoroallenes was rationalized by studying their reactivity towards Group6 hydride complexes. |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201201125 |