Fe^sub 3^O^sub 4^/salicylic acid nanoparticles versatility in magnetic mediated vascular nanoblockage
An aqueous dispersion of Fe^sub 3^O^sub 4^/salicylic acid magnetic nanoparticles (SaMNPs) was synthesized by a modified Massart method, characterized by Inductively Coupled Plasma-Optic Emission Spectrometry (ICP-OES), High-Resolution Transmission Electron Microscopy (HRTEM) and Dynamic Light Scatte...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2016-01, Vol.18 (1), p.1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An aqueous dispersion of Fe^sub 3^O^sub 4^/salicylic acid magnetic nanoparticles (SaMNPs) was synthesized by a modified Massart method, characterized by Inductively Coupled Plasma-Optic Emission Spectrometry (ICP-OES), High-Resolution Transmission Electron Microscopy (HRTEM) and Dynamic Light Scattering (DLS) methods, and tested on the chick chorioallantoic membrane (CAM) model to evaluate biocompatibility, biodistribution, intravascular time persistence, and ability to be magnetically target driven in order to block the blood supply into a tumor xenograft. ICP-OES, DLS, and HRTEM SaMNPs sample analyses showed a 0.356 mg/mL Fe concentration, a good stability in water (average Zeta potential of 39.3 mV), a hydrodynamic diameter around 52 nm and a core diameter in the 7-15 nm range for the Fe^sub 3^O^sub 4^ nanoparticles. In vivo CAM assay showed that SaMNPs were biocompatible with the chick embryo, were fixed almost completely by the liver, had no embolic potential, and a threshold-dose-dependent intravascular magnetic targeting time. Study on the CAM tumor model showed that SaMNPs could be used for long-term magnetically mediated nanoblocking of the capillary networks and 70-µm smaller arterioles. |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-015-3318-5 |