Effect of formulation of silica-based solution on corrosion resistance of silicate coating on hot-dip galvanized steel

Several silica‐based solutions with 50 g/l of SiO2 were prepared from sodium silicate solutions and silica sol; the silicate conversion coatings were obtained by immersing hot‐dip galvanized steel sheets in these solutions. These solutions were characterized using high‐resolution transmission electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2016-03, Vol.48 (3), p.132-138
Hauptverfasser: Zhang, Shuang-hong, Kong, Gang, Sun, Zi-wen, Che, Chun-shan, Lu, Jin-tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several silica‐based solutions with 50 g/l of SiO2 were prepared from sodium silicate solutions and silica sol; the silicate conversion coatings were obtained by immersing hot‐dip galvanized steel sheets in these solutions. These solutions were characterized using high‐resolution transmission electron microscopy and 29Si nuclear magnetic resonance; the morphology of the coatings was observed by SEM and atomic force microscopy while the corrosion resistance was evaluated by electrochemical measurements as well as neutral salt spray tests. The results show that the coatings obtained from the single silica sol solution had poor adhesion and the coating obtained from the sodium silicate solution with low SiO2/Na2O molar ratio was uneven. By adding the silica sol to the silicate solution with low molar ratio, uniform coatings with better protection property were obtained. According to the results of 29Si nuclear magnetic resonance spectra, the effects of the distribution of silicate anions with various polymerization degrees in the silica‐based solutions on the microstructure and corrosion resistance of the silicate coatings are discussed. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
DOI:10.1002/sia.5898