View-invariant Gait Authentication Based on Silhouette Contours Analysis and View Estimation

In this paper, we propose a novel view-invariant gait authentication method based on silhouette contours analysis and view estimation. The approach extracts Lucas-Kanade based gait flow image and head and shoulder mean shape(LKGFI-HSMS)of a human by using the Lucas-Kanade s method and procrustes sha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2015-04, Vol.2 (2), p.226-232
Hauptverfasser: Jia, Songmin, Wang, Lijia, Li, Xiuzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel view-invariant gait authentication method based on silhouette contours analysis and view estimation. The approach extracts Lucas-Kanade based gait flow image and head and shoulder mean shape(LKGFI-HSMS)of a human by using the Lucas-Kanade s method and procrustes shape analysis(PSA). LKGFI-HSMS can preserve the dynamic and static features of a gait sequence. The view between a person and a camera is identified for selecting the target s gait feature to overcome view variations. The similarity scores of LKGFI and HSMS are calculated. The product rule combines the two similarity scores to further improve the discrimination power of extracted features. Experimental results demonstrate that the proposed approach is robust to view variations and has a high authentication rate.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2015.7081662