Seeing Stars of Valence and Arousal in Blog Posts
Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of vale...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2013-01, Vol.4 (1), p.116-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 1 |
container_start_page | 116 |
container_title | IEEE transactions on affective computing |
container_volume | 4 |
creator | Paltoglou, G. Thelwall, M. |
description | Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors. |
doi_str_mv | 10.1109/T-AFFC.2012.36 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759349130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6365167</ieee_id><sourcerecordid>3931742611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOOauXrwEPLcmefnRHOdwUxgorHoNaZqOjtrMpDv439syEd_l-w6f73vwQeiWkpxSoh_KbLler3JGKMtBXqAZ1VxnQLi4_Ldfo0VKBzIOAEimZojuvG_7Pd4NNiYcGvxhO987j21f42UMp2Q73Pb4sQt7_BbSkG7QVWO75Be_OUfv66dy9ZxtXzcvq-U2cyBgyCpW25oUnBdNZT3VjljgRBLHiVKqFoJDLYE3wLiTslFMaVYpoSsnhS-Egzm6P989xvB18mkwh3CK_fjS0JEDrimQkcrPlIshpegbc4ztp43fhhIzmTGlmcyYyYwBORbuzoXWe_8HS5CCSgU_RWtb2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759349130</pqid></control><display><type>article</type><title>Seeing Stars of Valence and Arousal in Blog Posts</title><source>IEEE</source><creator>Paltoglou, G. ; Thelwall, M.</creator><creatorcontrib>Paltoglou, G. ; Thelwall, M.</creatorcontrib><description>Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/T-AFFC.2012.36</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>affect detection ; Algorithm design and analysis ; Data mining ; Mining methods and algorithms ; Mood ; Predictive models ; Sentiment analysis</subject><ispartof>IEEE transactions on affective computing, 2013-01, Vol.4 (1), p.116-123</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan-Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</citedby><cites>FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6365167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6365167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paltoglou, G.</creatorcontrib><creatorcontrib>Thelwall, M.</creatorcontrib><title>Seeing Stars of Valence and Arousal in Blog Posts</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.</description><subject>affect detection</subject><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Mining methods and algorithms</subject><subject>Mood</subject><subject>Predictive models</subject><subject>Sentiment analysis</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOOauXrwEPLcmefnRHOdwUxgorHoNaZqOjtrMpDv439syEd_l-w6f73vwQeiWkpxSoh_KbLler3JGKMtBXqAZ1VxnQLi4_Ldfo0VKBzIOAEimZojuvG_7Pd4NNiYcGvxhO987j21f42UMp2Q73Pb4sQt7_BbSkG7QVWO75Be_OUfv66dy9ZxtXzcvq-U2cyBgyCpW25oUnBdNZT3VjljgRBLHiVKqFoJDLYE3wLiTslFMaVYpoSsnhS-Egzm6P989xvB18mkwh3CK_fjS0JEDrimQkcrPlIshpegbc4ztp43fhhIzmTGlmcyYyYwBORbuzoXWe_8HS5CCSgU_RWtb2g</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Paltoglou, G.</creator><creator>Thelwall, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Seeing Stars of Valence and Arousal in Blog Posts</title><author>Paltoglou, G. ; Thelwall, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>affect detection</topic><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Mining methods and algorithms</topic><topic>Mood</topic><topic>Predictive models</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paltoglou, G.</creatorcontrib><creatorcontrib>Thelwall, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paltoglou, G.</au><au>Thelwall, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seeing Stars of Valence and Arousal in Blog Posts</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2013-01</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>116</spage><epage>123</epage><pages>116-123</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/T-AFFC.2012.36</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2013-01, Vol.4 (1), p.116-123 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_proquest_journals_1759349130 |
source | IEEE |
subjects | affect detection Algorithm design and analysis Data mining Mining methods and algorithms Mood Predictive models Sentiment analysis |
title | Seeing Stars of Valence and Arousal in Blog Posts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seeing%20Stars%20of%20Valence%20and%20Arousal%20in%20Blog%20Posts&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Paltoglou,%20G.&rft.date=2013-01&rft.volume=4&rft.issue=1&rft.spage=116&rft.epage=123&rft.pages=116-123&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/T-AFFC.2012.36&rft_dat=%3Cproquest_RIE%3E3931742611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759349130&rft_id=info:pmid/&rft_ieee_id=6365167&rfr_iscdi=true |