Seeing Stars of Valence and Arousal in Blog Posts

Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of vale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2013-01, Vol.4 (1), p.116-123
Hauptverfasser: Paltoglou, G., Thelwall, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue 1
container_start_page 116
container_title IEEE transactions on affective computing
container_volume 4
creator Paltoglou, G.
Thelwall, M.
description Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.
doi_str_mv 10.1109/T-AFFC.2012.36
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1759349130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6365167</ieee_id><sourcerecordid>3931742611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOOauXrwEPLcmefnRHOdwUxgorHoNaZqOjtrMpDv439syEd_l-w6f73vwQeiWkpxSoh_KbLler3JGKMtBXqAZ1VxnQLi4_Ldfo0VKBzIOAEimZojuvG_7Pd4NNiYcGvxhO987j21f42UMp2Q73Pb4sQt7_BbSkG7QVWO75Be_OUfv66dy9ZxtXzcvq-U2cyBgyCpW25oUnBdNZT3VjljgRBLHiVKqFoJDLYE3wLiTslFMaVYpoSsnhS-Egzm6P989xvB18mkwh3CK_fjS0JEDrimQkcrPlIshpegbc4ztp43fhhIzmTGlmcyYyYwBORbuzoXWe_8HS5CCSgU_RWtb2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759349130</pqid></control><display><type>article</type><title>Seeing Stars of Valence and Arousal in Blog Posts</title><source>IEEE</source><creator>Paltoglou, G. ; Thelwall, M.</creator><creatorcontrib>Paltoglou, G. ; Thelwall, M.</creatorcontrib><description>Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/T-AFFC.2012.36</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>affect detection ; Algorithm design and analysis ; Data mining ; Mining methods and algorithms ; Mood ; Predictive models ; Sentiment analysis</subject><ispartof>IEEE transactions on affective computing, 2013-01, Vol.4 (1), p.116-123</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan-Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</citedby><cites>FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6365167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6365167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paltoglou, G.</creatorcontrib><creatorcontrib>Thelwall, M.</creatorcontrib><title>Seeing Stars of Valence and Arousal in Blog Posts</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.</description><subject>affect detection</subject><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Mining methods and algorithms</subject><subject>Mood</subject><subject>Predictive models</subject><subject>Sentiment analysis</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOOauXrwEPLcmefnRHOdwUxgorHoNaZqOjtrMpDv439syEd_l-w6f73vwQeiWkpxSoh_KbLler3JGKMtBXqAZ1VxnQLi4_Ldfo0VKBzIOAEimZojuvG_7Pd4NNiYcGvxhO987j21f42UMp2Q73Pb4sQt7_BbSkG7QVWO75Be_OUfv66dy9ZxtXzcvq-U2cyBgyCpW25oUnBdNZT3VjljgRBLHiVKqFoJDLYE3wLiTslFMaVYpoSsnhS-Egzm6P989xvB18mkwh3CK_fjS0JEDrimQkcrPlIshpegbc4ztp43fhhIzmTGlmcyYyYwBORbuzoXWe_8HS5CCSgU_RWtb2g</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Paltoglou, G.</creator><creator>Thelwall, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Seeing Stars of Valence and Arousal in Blog Posts</title><author>Paltoglou, G. ; Thelwall, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b2dad08448fbae19c0a34060c40777d5543d634f324c66f72792b759bc65e85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>affect detection</topic><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Mining methods and algorithms</topic><topic>Mood</topic><topic>Predictive models</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paltoglou, G.</creatorcontrib><creatorcontrib>Thelwall, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paltoglou, G.</au><au>Thelwall, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seeing Stars of Valence and Arousal in Blog Posts</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2013-01</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>116</spage><epage>123</epage><pages>116-123</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/T-AFFC.2012.36</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2013-01, Vol.4 (1), p.116-123
issn 1949-3045
1949-3045
language eng
recordid cdi_proquest_journals_1759349130
source IEEE
subjects affect detection
Algorithm design and analysis
Data mining
Mining methods and algorithms
Mood
Predictive models
Sentiment analysis
title Seeing Stars of Valence and Arousal in Blog Posts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seeing%20Stars%20of%20Valence%20and%20Arousal%20in%20Blog%20Posts&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Paltoglou,%20G.&rft.date=2013-01&rft.volume=4&rft.issue=1&rft.spage=116&rft.epage=123&rft.pages=116-123&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/T-AFFC.2012.36&rft_dat=%3Cproquest_RIE%3E3931742611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759349130&rft_id=info:pmid/&rft_ieee_id=6365167&rfr_iscdi=true