Seeing Stars of Valence and Arousal in Blog Posts
Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of vale...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2013-01, Vol.4 (1), p.116-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sentiment analysis is a growing field of research, driven by both commercial applications and academic interest. In this paper, we explore multiclass classification of diary-like blog posts for the sentiment dimensions of valence and arousal, where the aim of the task is to predict the level of valence and arousal of a post on a ordinal five-level scale, from very negative/low to very positive/high, respectively. We show how to map discrete affective states into ordinal scales in these two dimensions, based on the psychological model of Russell's circumplex model of affect and label a previously available corpus with multidimensional, real-valued annotations. Experimental results using regression and one-versus-all approaches of support vector machine classifiers show that although the latter approach provides better exact ordinal class prediction accuracy, regression techniques tend to make smaller scale errors. |
---|---|
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/T-AFFC.2012.36 |