Transition Management of Microgrids With High Penetration of Renewable Energy

Microgrids are receiving attention due to the increasing need to integrate distributed generations and to ensure power quality and to provide energy surety to critical loads. Some of the main topics concerning microgrids are transients and stability concerns during transitions including intentional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2014-03, Vol.5 (2), p.539-549
Hauptverfasser: Qiang Fu, Nasiri, Adel, Bhavaraju, Vijay, Solanki, Ashish, Abdallah, Tarek, Yu, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microgrids are receiving attention due to the increasing need to integrate distributed generations and to ensure power quality and to provide energy surety to critical loads. Some of the main topics concerning microgrids are transients and stability concerns during transitions including intentional and unintentional islanding and reconnection. In this paper, the standard IEEE 34 bus distribution feeder is adapted and managed as a microgrid by adding distributed generations and load profiles. Supervisory power managements have been defined to manage the transitions and to minimize the transients on voltage and frequency. Detailed analyses for islanding, reconnection, and black start are presented for various conditions. The proposed control techniques accept inputs from local measurements and supervisory controls in order to manage the system voltage and frequency. An experimental system has been built which includes three 250 kW inverters emulating natural gas generator, energy storage, and renewable source. The simulation and experimental results are provided which verifies the analytical presentation of the hardware and control algorithms.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2013.2286952