Securing M2M With Post-Quantum Public-Key Cryptography

In this paper, we present an ASIC implementation of two post-quantum public-key cryptosystems (PKCs): NTRUEncrypt and TTS. It represents a first step toward securing machine-to-machine (M2M) systems using strong, hardware-assisted PKC. In contrast to the conventional wisdom that PKC is too "exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on emerging and selected topics in circuits and systems 2013-03, Vol.3 (1), p.106-116
Hauptverfasser: Shih, Jie-Ren, Hu, Yongbo, Hsiao, Ming-Chun, Chen, Ming-Shing, Shen, Wen-Chung, Yang, Bo-Yin, Wu, An-Yeu, Cheng, Chen-Mou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present an ASIC implementation of two post-quantum public-key cryptosystems (PKCs): NTRUEncrypt and TTS. It represents a first step toward securing machine-to-machine (M2M) systems using strong, hardware-assisted PKC. In contrast to the conventional wisdom that PKC is too "expensive" for M2M sensors, it actually can lower the total cost of ownership because of cost savings in provision, deployment, operation, maintenance, and general management. Furthermore, PKC can be more energy-efficient because PKC-based security protocols usually involve less communication than their symmetric-key-based counterparts, and communication is getting relatively more and more expensive compared with computation. More importantly, recent algorithmic advances have brought several new PKCs, NTRUEncrypt and TTS included, that are orders of magnitude more efficient than traditional PKCs such as RSA. It is therefore our primary goal in this paper to demonstrate the feasibility of using hardware-based PKC to provide general data security in M2M applications.
ISSN:2156-3357
2156-3365
DOI:10.1109/JETCAS.2013.2244772