Investigations of Flow Pattern in the SEN Regarding Different Stopper Rod Geometries
Due to an ever‐increasing demand for product quality, a comprehensive understanding of the flow behavior of molten steel inside the continuous casting process is necessary. To investigate flow phenomena in a CSP‐mold, a 1:1 water model corresponding to a continuous casting plant with tundish, stoppe...
Gespeichert in:
Veröffentlicht in: | Steel research international 2015-12, Vol.86 (12), p.1469-1479 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to an ever‐increasing demand for product quality, a comprehensive understanding of the flow behavior of molten steel inside the continuous casting process is necessary. To investigate flow phenomena in a CSP‐mold, a 1:1 water model corresponding to a continuous casting plant with tundish, stopper rod, SEN, and mold is used. In the present study the flow at the SEN entry section was investigated regarding different stopper rod tips and volume flows as well as the connected influences to the mold flow. To identify the influence of the stopper tip designs to the flow inside the SEN, the industrial used elliptical stopper tip was compared with two different tip geometries which are conical and spherical. For the investigations the Particle Image Velocimetry (PIV) has been applied. The average velocity, the turbulent kinetic energy, and the pressure distribution inside the SEN are highly influenced by the stopper tip geometry. For different configurations of stopper tips as well as different volume flows absolutely different flow patterns are measured. Furthermore the obtained velocity fields inside the mold potentially give the information that the flow arising there is influenced by the shape of the stopper tip.
Due to an ever‐increasing demand for product quality a comprehensive understanding of the flow behavior of molten steel inside the continuous casting process is necessary. In the present study the flow at the SEN entry section is investigated regarding different geometries of the stopper rod tip and varying volume flows as well as the connected influences to the mold flow using a 1:1 water model of a CSP‐mold. |
---|---|
ISSN: | 1611-3683 1869-344X |
DOI: | 10.1002/srin.201400319 |