CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-[kappa]B pathway in multidrug-resistant glioblastoma cells in vitro
Chemotherapy is an adjuvant treatment for glioblastomas, however, chemotherapy remains palliative because of the development of multidrug resistance (MDR). Following prolonged chemotherapy, MDR protein 1 (MDR1) and CD133 increase in recurrent glioblastomas. CD133 positive (CD133+) glioma cancer stem...
Gespeichert in:
Veröffentlicht in: | Oncogene 2016-01, Vol.35 (2), p.241 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemotherapy is an adjuvant treatment for glioblastomas, however, chemotherapy remains palliative because of the development of multidrug resistance (MDR). Following prolonged chemotherapy, MDR protein 1 (MDR1) and CD133 increase in recurrent glioblastomas. CD133 positive (CD133+) glioma cancer stem-like cells (GCSCs) markedly promote drug resistance and exhibit increased DNA damage repair capability; thus they have a key role in determining tumor chemosensitivity. Although CD133, DNA-dependent protein kinase (DNA-PK), and MDR1 are elevated in CD133+ GCSCs, the relationship among these molecules has not been elucidated. In this study, MDR glioblastoma cell lines were created in response to prolonged doxorubicin chemotherapy. CD133, DNA-PK and MDR1 were markedly elevated in these cells. CD133 and DNA-PK may increase MDR1 via the phosphatidylinositol-3-kinase (PI3K)-Akt signal pathway. PI3K downstream targets Akt and nuclear factor (NF)-[kappa]B, which interacts with the MDR1 promoter, were also elevated in these cells. Downregulation of CD133 and DNA-PK by small interfering RNA, or inhibition of PI3K or Akt, decreased Akt, NF-[kappa]B and MDR1 expression. The results indicate that CD133 and DNA-PK regulate MDR1 through the PI3K- or Akt-NF-[kappa]B signal pathway. Consequently, a novel chemotherapeutic regimen targeting CD133 and DNA-PK in combination with traditional protocols may increase chemotherapeutic efficacy and improve prognosis for individuals who present with glioblastoma. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2015.78 |