Effectiveness of Averaged Learning Subspace Method for Application to Coronary Plaque Tissue Classification

A coronary plaque tissue classification is essential for diagnosis of acute coronary syndromes. We have applied the Averaged Learning Subspace Method (ALSM) with consideration for the neighborhood information, to classify coronary plaque tissues. We have succeeded in classifying the tissues whilst k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2015/07/30, Vol.19(4), pp.171-174
Hauptverfasser: Miwa, Shinichi, Furukawa, Shota, Uchino, Eiji, Suetake, Noriaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A coronary plaque tissue classification is essential for diagnosis of acute coronary syndromes. We have applied the Averaged Learning Subspace Method (ALSM) with consideration for the neighborhood information, to classify coronary plaque tissues. We have succeeded in classifying the tissues whilst keeping the merit of the subspace method. Simple parameter settings and low computing cost have been realized, and compared to our previous method more accurate classification results have been obtained.
ISSN:1342-6230
1880-1013
DOI:10.2299/jsp.19.171