Principal Component Analysis for the Nonlinear Portfolio Model

The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2014/07/30, Vol.18(4), pp.177-180
Hauptverfasser: Morimoto, Kai, Saito, Masahiro, Inose, Satoshi, Kannari, Atsushi, Suzuki, Tomoya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 4
container_start_page 177
container_title Journal of Signal Processing
container_volume 18
creator Morimoto, Kai
Saito, Masahiro
Inose, Satoshi
Kannari, Atsushi
Suzuki, Tomoya
description The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.
doi_str_mv 10.2299/jsp.18.177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1755873294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3918365751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</originalsourceid><addsrcrecordid>eNo90EtLAzEQAOAgCtbqxV8Q8CZszWM3yR4USvEFVXvQc8hmE7tLmqzJ9tB_b6S1pxlmvhmGAeAaoxkhdX3Xp2GGxQxzfgImWAhUYITpac5pSQpGKDoHFyn1CDHGKzoBD6vYed0NysFF2AzBGz_CuVdul7oEbYhwXBv4HrzrvFERrkIcbXBdgG-hNe4SnFnlkrk6xCn4enr8XLwUy4_n18V8WWjKMC-sEgyj2nBEubWIMkYsYqXgCjVlQ5tGa5wbTHBETEutrnCLjRAa6bZsGkKn4Ga_d4jhZ2vSKPuwjfnMJDGvKsEpqcusbvdKx5BSNFYOsduouJMYyb__yPwfiUWe4Rnf73GfRvVtjlTFsdPO_NPy4I91vVZRGk9_AYBeboU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755873294</pqid></control><display><type>article</type><title>Principal Component Analysis for the Nonlinear Portfolio Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Morimoto, Kai ; Saito, Masahiro ; Inose, Satoshi ; Kannari, Atsushi ; Suzuki, Tomoya</creator><creatorcontrib>Morimoto, Kai ; Saito, Masahiro ; Inose, Satoshi ; Kannari, Atsushi ; Suzuki, Tomoya</creatorcontrib><description>The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.</description><identifier>ISSN: 1342-6230</identifier><identifier>EISSN: 1880-1013</identifier><identifier>DOI: 10.2299/jsp.18.177</identifier><language>eng</language><publisher>Tokyo: Research Institute of Signal Processing, Japan</publisher><ispartof>Journal of Signal Processing, 2014/07/30, Vol.18(4), pp.177-180</ispartof><rights>2014 Research Institute of Signal Processing, Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</citedby><cites>FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Morimoto, Kai</creatorcontrib><creatorcontrib>Saito, Masahiro</creatorcontrib><creatorcontrib>Inose, Satoshi</creatorcontrib><creatorcontrib>Kannari, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Tomoya</creatorcontrib><title>Principal Component Analysis for the Nonlinear Portfolio Model</title><title>Journal of Signal Processing</title><addtitle>Journal of Signal Processing</addtitle><description>The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.</description><issn>1342-6230</issn><issn>1880-1013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90EtLAzEQAOAgCtbqxV8Q8CZszWM3yR4USvEFVXvQc8hmE7tLmqzJ9tB_b6S1pxlmvhmGAeAaoxkhdX3Xp2GGxQxzfgImWAhUYITpac5pSQpGKDoHFyn1CDHGKzoBD6vYed0NysFF2AzBGz_CuVdul7oEbYhwXBv4HrzrvFERrkIcbXBdgG-hNe4SnFnlkrk6xCn4enr8XLwUy4_n18V8WWjKMC-sEgyj2nBEubWIMkYsYqXgCjVlQ5tGa5wbTHBETEutrnCLjRAa6bZsGkKn4Ga_d4jhZ2vSKPuwjfnMJDGvKsEpqcusbvdKx5BSNFYOsduouJMYyb__yPwfiUWe4Rnf73GfRvVtjlTFsdPO_NPy4I91vVZRGk9_AYBeboU</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Morimoto, Kai</creator><creator>Saito, Masahiro</creator><creator>Inose, Satoshi</creator><creator>Kannari, Atsushi</creator><creator>Suzuki, Tomoya</creator><general>Research Institute of Signal Processing, Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Principal Component Analysis for the Nonlinear Portfolio Model</title><author>Morimoto, Kai ; Saito, Masahiro ; Inose, Satoshi ; Kannari, Atsushi ; Suzuki, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morimoto, Kai</creatorcontrib><creatorcontrib>Saito, Masahiro</creatorcontrib><creatorcontrib>Inose, Satoshi</creatorcontrib><creatorcontrib>Kannari, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Tomoya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morimoto, Kai</au><au>Saito, Masahiro</au><au>Inose, Satoshi</au><au>Kannari, Atsushi</au><au>Suzuki, Tomoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal Component Analysis for the Nonlinear Portfolio Model</atitle><jtitle>Journal of Signal Processing</jtitle><addtitle>Journal of Signal Processing</addtitle><date>2014</date><risdate>2014</risdate><volume>18</volume><issue>4</issue><spage>177</spage><epage>180</epage><pages>177-180</pages><issn>1342-6230</issn><eissn>1880-1013</eissn><abstract>The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.</abstract><cop>Tokyo</cop><pub>Research Institute of Signal Processing, Japan</pub><doi>10.2299/jsp.18.177</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-6230
ispartof Journal of Signal Processing, 2014/07/30, Vol.18(4), pp.177-180
issn 1342-6230
1880-1013
language eng
recordid cdi_proquest_journals_1755873294
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
title Principal Component Analysis for the Nonlinear Portfolio Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20Component%20Analysis%20for%20the%20Nonlinear%20Portfolio%20Model&rft.jtitle=Journal%20of%20Signal%20Processing&rft.au=Morimoto,%20Kai&rft.date=2014&rft.volume=18&rft.issue=4&rft.spage=177&rft.epage=180&rft.pages=177-180&rft.issn=1342-6230&rft.eissn=1880-1013&rft_id=info:doi/10.2299/jsp.18.177&rft_dat=%3Cproquest_cross%3E3918365751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755873294&rft_id=info:pmid/&rfr_iscdi=true