Principal Component Analysis for the Nonlinear Portfolio Model
The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portf...
Gespeichert in:
Veröffentlicht in: | Journal of Signal Processing 2014/07/30, Vol.18(4), pp.177-180 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 4 |
container_start_page | 177 |
container_title | Journal of Signal Processing |
container_volume | 18 |
creator | Morimoto, Kai Saito, Masahiro Inose, Satoshi Kannari, Atsushi Suzuki, Tomoya |
description | The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data. |
doi_str_mv | 10.2299/jsp.18.177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1755873294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3918365751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</originalsourceid><addsrcrecordid>eNo90EtLAzEQAOAgCtbqxV8Q8CZszWM3yR4USvEFVXvQc8hmE7tLmqzJ9tB_b6S1pxlmvhmGAeAaoxkhdX3Xp2GGxQxzfgImWAhUYITpac5pSQpGKDoHFyn1CDHGKzoBD6vYed0NysFF2AzBGz_CuVdul7oEbYhwXBv4HrzrvFERrkIcbXBdgG-hNe4SnFnlkrk6xCn4enr8XLwUy4_n18V8WWjKMC-sEgyj2nBEubWIMkYsYqXgCjVlQ5tGa5wbTHBETEutrnCLjRAa6bZsGkKn4Ga_d4jhZ2vSKPuwjfnMJDGvKsEpqcusbvdKx5BSNFYOsduouJMYyb__yPwfiUWe4Rnf73GfRvVtjlTFsdPO_NPy4I91vVZRGk9_AYBeboU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755873294</pqid></control><display><type>article</type><title>Principal Component Analysis for the Nonlinear Portfolio Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Morimoto, Kai ; Saito, Masahiro ; Inose, Satoshi ; Kannari, Atsushi ; Suzuki, Tomoya</creator><creatorcontrib>Morimoto, Kai ; Saito, Masahiro ; Inose, Satoshi ; Kannari, Atsushi ; Suzuki, Tomoya</creatorcontrib><description>The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.</description><identifier>ISSN: 1342-6230</identifier><identifier>EISSN: 1880-1013</identifier><identifier>DOI: 10.2299/jsp.18.177</identifier><language>eng</language><publisher>Tokyo: Research Institute of Signal Processing, Japan</publisher><ispartof>Journal of Signal Processing, 2014/07/30, Vol.18(4), pp.177-180</ispartof><rights>2014 Research Institute of Signal Processing, Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</citedby><cites>FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Morimoto, Kai</creatorcontrib><creatorcontrib>Saito, Masahiro</creatorcontrib><creatorcontrib>Inose, Satoshi</creatorcontrib><creatorcontrib>Kannari, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Tomoya</creatorcontrib><title>Principal Component Analysis for the Nonlinear Portfolio Model</title><title>Journal of Signal Processing</title><addtitle>Journal of Signal Processing</addtitle><description>The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.</description><issn>1342-6230</issn><issn>1880-1013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90EtLAzEQAOAgCtbqxV8Q8CZszWM3yR4USvEFVXvQc8hmE7tLmqzJ9tB_b6S1pxlmvhmGAeAaoxkhdX3Xp2GGxQxzfgImWAhUYITpac5pSQpGKDoHFyn1CDHGKzoBD6vYed0NysFF2AzBGz_CuVdul7oEbYhwXBv4HrzrvFERrkIcbXBdgG-hNe4SnFnlkrk6xCn4enr8XLwUy4_n18V8WWjKMC-sEgyj2nBEubWIMkYsYqXgCjVlQ5tGa5wbTHBETEutrnCLjRAa6bZsGkKn4Ga_d4jhZ2vSKPuwjfnMJDGvKsEpqcusbvdKx5BSNFYOsduouJMYyb__yPwfiUWe4Rnf73GfRvVtjlTFsdPO_NPy4I91vVZRGk9_AYBeboU</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Morimoto, Kai</creator><creator>Saito, Masahiro</creator><creator>Inose, Satoshi</creator><creator>Kannari, Atsushi</creator><creator>Suzuki, Tomoya</creator><general>Research Institute of Signal Processing, Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2014</creationdate><title>Principal Component Analysis for the Nonlinear Portfolio Model</title><author>Morimoto, Kai ; Saito, Masahiro ; Inose, Satoshi ; Kannari, Atsushi ; Suzuki, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3617-fa86109e7037ff03662f06487a0b4b3bbcc17ff68702ed3fc51d1e88c0cd4bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morimoto, Kai</creatorcontrib><creatorcontrib>Saito, Masahiro</creatorcontrib><creatorcontrib>Inose, Satoshi</creatorcontrib><creatorcontrib>Kannari, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Tomoya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morimoto, Kai</au><au>Saito, Masahiro</au><au>Inose, Satoshi</au><au>Kannari, Atsushi</au><au>Suzuki, Tomoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal Component Analysis for the Nonlinear Portfolio Model</atitle><jtitle>Journal of Signal Processing</jtitle><addtitle>Journal of Signal Processing</addtitle><date>2014</date><risdate>2014</risdate><volume>18</volume><issue>4</issue><spage>177</spage><epage>180</epage><pages>177-180</pages><issn>1342-6230</issn><eissn>1880-1013</eissn><abstract>The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.</abstract><cop>Tokyo</cop><pub>Research Institute of Signal Processing, Japan</pub><doi>10.2299/jsp.18.177</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1342-6230 |
ispartof | Journal of Signal Processing, 2014/07/30, Vol.18(4), pp.177-180 |
issn | 1342-6230 1880-1013 |
language | eng |
recordid | cdi_proquest_journals_1755873294 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
title | Principal Component Analysis for the Nonlinear Portfolio Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20Component%20Analysis%20for%20the%20Nonlinear%20Portfolio%20Model&rft.jtitle=Journal%20of%20Signal%20Processing&rft.au=Morimoto,%20Kai&rft.date=2014&rft.volume=18&rft.issue=4&rft.spage=177&rft.epage=180&rft.pages=177-180&rft.issn=1342-6230&rft.eissn=1880-1013&rft_id=info:doi/10.2299/jsp.18.177&rft_dat=%3Cproquest_cross%3E3918365751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755873294&rft_id=info:pmid/&rfr_iscdi=true |