Principal Component Analysis for the Nonlinear Portfolio Model

The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2014/07/30, Vol.18(4), pp.177-180
Hauptverfasser: Morimoto, Kai, Saito, Masahiro, Inose, Satoshi, Kannari, Atsushi, Suzuki, Tomoya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study improves the nonlinear portfolio model by using principal component analysis. To enhance the portfolio effect of spreading risks efficiently, we aim for lower correlations among each asset movement. For this reason, we apply the principal components of assets to the nonlinear portfolio model, which uses nonlinear prediction to estimate future movements. However, because we are not sure whether these principal components have nonlinearity, we perform Fourier-shuffled surrogate tests on the principal components. Finally, we confirm the efficiency of our nonlinear principal-component portfolio model through some investment simulations with real financial data.
ISSN:1342-6230
1880-1013
DOI:10.2299/jsp.18.177