A Generalized Liouville Theorem for Entire Functions
Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem.
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2015-12, Vol.122 (10), p.1001-1002 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1002 |
---|---|
container_issue | 10 |
container_start_page | 1001 |
container_title | The American mathematical monthly |
container_volume | 122 |
creator | Peng, Weimin |
description | Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem. |
doi_str_mv | 10.4169/amer.math.monthly.122.10.1001 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1752273467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4169/amer.math.monthly.122.10.1001</jstor_id><sourcerecordid>10.4169/amer.math.monthly.122.10.1001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-28a9f01f1027fe33522af6fa916f74af9b6ad1d03265fa396a4c743a3a5e34333</originalsourceid><addsrcrecordid>eNqVkF1LwzAUhoMoOKf_oSBetuarSSN4McY2hYE38zocu4R1tM1MUmH-elO6P-DV4eX9OPAg9ERwwYlQz9AZX3QQD0Xn-nhozwWhtEguwZhcoRlRDOdYSXqNZhhjmqtK4Vt0F8IxSVxyOkN8kW1Mbzy0za_ZZ9vGDT9N25psdzDOmy6zzmerPjbeZOuhr2Pj-nCPbiy0wTxc7hx9rle75Vu-_di8LxfbvKZVFXNagbKYWIKptIaxklKwwoIiwkoOVn0J2JM9ZlSUFpgSwGvJGTAoDeOMsTl6nHZP3n0PJkR9dIPv00tNZFqTjAuZUq9TqvYuBG-sPvmmA3_WBOsRlB5B6RGUvoDSCdTojqBS_2XqH0N0_p_lP5VBdNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752273467</pqid></control><display><type>article</type><title>A Generalized Liouville Theorem for Entire Functions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Peng, Weimin</creator><creatorcontrib>Peng, Weimin</creatorcontrib><description>Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.4169/amer.math.monthly.122.10.1001</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Analytic functions ; Entire functions ; Linear algebra ; Liouville theorem ; Mathematical constants ; Mathematical theorems ; Mathematics ; Mathematics education ; Theorems</subject><ispartof>The American mathematical monthly, 2015-12, Vol.122 (10), p.1001-1002</ispartof><rights>Copyright the Mathematical Association of America 2015</rights><rights>Copyright Mathematical Association Of America Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,832,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Weimin</creatorcontrib><title>A Generalized Liouville Theorem for Entire Functions</title><title>The American mathematical monthly</title><description>Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem.</description><subject>Analytic functions</subject><subject>Entire functions</subject><subject>Linear algebra</subject><subject>Liouville theorem</subject><subject>Mathematical constants</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Mathematics education</subject><subject>Theorems</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVkF1LwzAUhoMoOKf_oSBetuarSSN4McY2hYE38zocu4R1tM1MUmH-elO6P-DV4eX9OPAg9ERwwYlQz9AZX3QQD0Xn-nhozwWhtEguwZhcoRlRDOdYSXqNZhhjmqtK4Vt0F8IxSVxyOkN8kW1Mbzy0za_ZZ9vGDT9N25psdzDOmy6zzmerPjbeZOuhr2Pj-nCPbiy0wTxc7hx9rle75Vu-_di8LxfbvKZVFXNagbKYWIKptIaxklKwwoIiwkoOVn0J2JM9ZlSUFpgSwGvJGTAoDeOMsTl6nHZP3n0PJkR9dIPv00tNZFqTjAuZUq9TqvYuBG-sPvmmA3_WBOsRlB5B6RGUvoDSCdTojqBS_2XqH0N0_p_lP5VBdNs</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Peng, Weimin</creator><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20151201</creationdate><title>A Generalized Liouville Theorem for Entire Functions</title><author>Peng, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-28a9f01f1027fe33522af6fa916f74af9b6ad1d03265fa396a4c743a3a5e34333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytic functions</topic><topic>Entire functions</topic><topic>Linear algebra</topic><topic>Liouville theorem</topic><topic>Mathematical constants</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Mathematics education</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Weimin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalized Liouville Theorem for Entire Functions</atitle><jtitle>The American mathematical monthly</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>122</volume><issue>10</issue><spage>1001</spage><epage>1002</epage><pages>1001-1002</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.4169/amer.math.monthly.122.10.1001</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2015-12, Vol.122 (10), p.1001-1002 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_proquest_journals_1752273467 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Analytic functions Entire functions Linear algebra Liouville theorem Mathematical constants Mathematical theorems Mathematics Mathematics education Theorems |
title | A Generalized Liouville Theorem for Entire Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalized%20Liouville%20Theorem%20for%20Entire%20Functions&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Peng,%20Weimin&rft.date=2015-12-01&rft.volume=122&rft.issue=10&rft.spage=1001&rft.epage=1002&rft.pages=1001-1002&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.4169/amer.math.monthly.122.10.1001&rft_dat=%3Cjstor_proqu%3E10.4169/amer.math.monthly.122.10.1001%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752273467&rft_id=info:pmid/&rft_jstor_id=10.4169/amer.math.monthly.122.10.1001&rfr_iscdi=true |