A Generalized Liouville Theorem for Entire Functions
Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem.
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2015-12, Vol.122 (10), p.1001-1002 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let be a holomorphic function such that for any . We show that if is a complete Riemannian metric, then f must be a constant. As a corollary we give a new proof of the classical Liouville theorem. |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.4169/amer.math.monthly.122.10.1001 |