On Convex Curves Which Have Many Inscribed Triangles of Maximum Area
Let K be a convex figure in the plane such that every point x ∈ ∂ K serves as a vertex of an inscribed triangle with maximum area. In this note, we prove a conjecture due to Genin and Tabachnikov that says where T is a triangle with maximum area inscribed in K. Moreover, we prove that the bounds in...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2015-12, Vol.122 (10), p.967-971 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K be a convex figure in the plane such that every point x ∈ ∂ K serves as a vertex of an inscribed triangle with maximum area. In this note, we prove a conjecture due to Genin and Tabachnikov that says where T is a triangle with maximum area inscribed in K. Moreover, we prove that the bounds in the left side and the right side of the inequality are obtained only for ellipses and parallelograms, respectively. |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.4169/amer.math.monthly.122.10.967 |