Least product relative error estimation

A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2016-02, Vol.144, p.91-98
Hauptverfasser: Chen, Kani, Lin, Yuanyuan, Wang, Zhanfeng, Ying, Zhiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 91
container_title Journal of multivariate analysis
container_volume 144
creator Chen, Kani
Lin, Yuanyuan
Wang, Zhanfeng
Ying, Zhiliang
description A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parameter. It is shown that the estimator is asymptotically normal and that the simple plug-in variance estimation is valid. Simulation results confirm that the proposed method performs well. An application to body fat calculation is presented to illustrate the new method.
doi_str_mv 10.1016/j.jmva.2015.10.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1752271564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X15002699</els_id><sourcerecordid>3907269121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8461e67a2fbabca12524df9590d3f562affa40463895527389930b4231d8b5733</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8FD55aM5OkacGLLK4KC14UvIU0nUDLbrsm3QX_vSnr2dODx7x5j4-xW-AFcCgf-qLfHW2BHFQyCg76jC2A1yrXKMU5W3AudY6q_rpkVzH2nAMoLRfsfkM2Ttk-jO3BTVmgrZ26I2UUwhgyilO3S8Y4XLMLb7eRbv50yT7Xzx-r13zz_vK2etrkTmic8kqWQKW26BvbOAuoULa-VjVvhVclWu-t5LIUVa0U6iS14I1EAW3VKC3Ekt2d_qZF34fUb_rxEIZUaUArRA2qlOkKT1cujDEG8mYf0tDwY4CbGYjpzQzEzEBmLwFJocdTiNL-Y0fBRNfR4KjtArnJtGP3X_wXrd1ncw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752271564</pqid></control><display><type>article</type><title>Least product relative error estimation</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Kani ; Lin, Yuanyuan ; Wang, Zhanfeng ; Ying, Zhiliang</creator><creatorcontrib>Chen, Kani ; Lin, Yuanyuan ; Wang, Zhanfeng ; Ying, Zhiliang</creatorcontrib><description>A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parameter. It is shown that the estimator is asymptotically normal and that the simple plug-in variance estimation is valid. Simulation results confirm that the proposed method performs well. An application to body fat calculation is presented to illustrate the new method.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2015.10.017</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Asymptotic methods ; Body fat ; Mathematical models ; Multiplicative regression model ; Parameter estimation ; Product form ; Regression analysis ; Relative error ; Scale invariance ; Studies ; Variance estimation</subject><ispartof>Journal of multivariate analysis, 2016-02, Vol.144, p.91-98</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Feb 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8461e67a2fbabca12524df9590d3f562affa40463895527389930b4231d8b5733</citedby><cites>FETCH-LOGICAL-c372t-8461e67a2fbabca12524df9590d3f562affa40463895527389930b4231d8b5733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2015.10.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chen, Kani</creatorcontrib><creatorcontrib>Lin, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Zhanfeng</creatorcontrib><creatorcontrib>Ying, Zhiliang</creatorcontrib><title>Least product relative error estimation</title><title>Journal of multivariate analysis</title><description>A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parameter. It is shown that the estimator is asymptotically normal and that the simple plug-in variance estimation is valid. Simulation results confirm that the proposed method performs well. An application to body fat calculation is presented to illustrate the new method.</description><subject>Asymptotic methods</subject><subject>Body fat</subject><subject>Mathematical models</subject><subject>Multiplicative regression model</subject><subject>Parameter estimation</subject><subject>Product form</subject><subject>Regression analysis</subject><subject>Relative error</subject><subject>Scale invariance</subject><subject>Studies</subject><subject>Variance estimation</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8FD55aM5OkacGLLK4KC14UvIU0nUDLbrsm3QX_vSnr2dODx7x5j4-xW-AFcCgf-qLfHW2BHFQyCg76jC2A1yrXKMU5W3AudY6q_rpkVzH2nAMoLRfsfkM2Ttk-jO3BTVmgrZ26I2UUwhgyilO3S8Y4XLMLb7eRbv50yT7Xzx-r13zz_vK2etrkTmic8kqWQKW26BvbOAuoULa-VjVvhVclWu-t5LIUVa0U6iS14I1EAW3VKC3Ekt2d_qZF34fUb_rxEIZUaUArRA2qlOkKT1cujDEG8mYf0tDwY4CbGYjpzQzEzEBmLwFJocdTiNL-Y0fBRNfR4KjtArnJtGP3X_wXrd1ncw</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Chen, Kani</creator><creator>Lin, Yuanyuan</creator><creator>Wang, Zhanfeng</creator><creator>Ying, Zhiliang</creator><general>Elsevier Inc</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201602</creationdate><title>Least product relative error estimation</title><author>Chen, Kani ; Lin, Yuanyuan ; Wang, Zhanfeng ; Ying, Zhiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8461e67a2fbabca12524df9590d3f562affa40463895527389930b4231d8b5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic methods</topic><topic>Body fat</topic><topic>Mathematical models</topic><topic>Multiplicative regression model</topic><topic>Parameter estimation</topic><topic>Product form</topic><topic>Regression analysis</topic><topic>Relative error</topic><topic>Scale invariance</topic><topic>Studies</topic><topic>Variance estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kani</creatorcontrib><creatorcontrib>Lin, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Zhanfeng</creatorcontrib><creatorcontrib>Ying, Zhiliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kani</au><au>Lin, Yuanyuan</au><au>Wang, Zhanfeng</au><au>Ying, Zhiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least product relative error estimation</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2016-02</date><risdate>2016</risdate><volume>144</volume><spage>91</spage><epage>98</epage><pages>91-98</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parameter. It is shown that the estimator is asymptotically normal and that the simple plug-in variance estimation is valid. Simulation results confirm that the proposed method performs well. An application to body fat calculation is presented to illustrate the new method.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2015.10.017</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2016-02, Vol.144, p.91-98
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1752271564
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Asymptotic methods
Body fat
Mathematical models
Multiplicative regression model
Parameter estimation
Product form
Regression analysis
Relative error
Scale invariance
Studies
Variance estimation
title Least product relative error estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20product%20relative%20error%20estimation&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Chen,%20Kani&rft.date=2016-02&rft.volume=144&rft.spage=91&rft.epage=98&rft.pages=91-98&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2015.10.017&rft_dat=%3Cproquest_cross%3E3907269121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752271564&rft_id=info:pmid/&rft_els_id=S0047259X15002699&rfr_iscdi=true