Least product relative error estimation

A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2016-02, Vol.144, p.91-98
Hauptverfasser: Chen, Kani, Lin, Yuanyuan, Wang, Zhanfeng, Ying, Zhiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A least product relative error criterion is proposed for multiplicative regression models. It is invariant under scale transformation of the outcome and covariates. In addition, the objective function is smooth and convex, resulting in a simple and uniquely defined estimator of the regression parameter. It is shown that the estimator is asymptotically normal and that the simple plug-in variance estimation is valid. Simulation results confirm that the proposed method performs well. An application to body fat calculation is presented to illustrate the new method.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2015.10.017