Asymptotic Properties of Monte Carlo Strategies for a Cumulative Link Model
For a cumulative link model in the Bayesian context, the posterior distribution cannot be obtained in closed form, and we have to resort to an approximation method. A simple data-augmentation strategy is widely used for that purpose but is known to work poorly. The marginal augmentation procedure an...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF THE JAPAN STATISTICAL SOCIETY 2014/09/29, Vol.44(1), pp.1-23 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a cumulative link model in the Bayesian context, the posterior distribution cannot be obtained in closed form, and we have to resort to an approximation method. A simple data-augmentation strategy is widely used for that purpose but is known to work poorly. The marginal augmentation procedure and the parameter-expanded data-augmentation procedure are considered to be remedies, but such strategies are still not free from poor convergence. In this paper, we propose a kind of the hybrid Markov chain Monte Carlo strategy. To evaluate the efficiency, a local non-degeneracy is introduced, and we also provide a numerical simulation to show the effect. |
---|---|
ISSN: | 1882-2754 1348-6365 |
DOI: | 10.14490/jjss.44.1 |