Asymptotic Properties of Monte Carlo Strategies for a Cumulative Link Model

For a cumulative link model in the Bayesian context, the posterior distribution cannot be obtained in closed form, and we have to resort to an approximation method. A simple data-augmentation strategy is widely used for that purpose but is known to work poorly. The marginal augmentation procedure an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOURNAL OF THE JAPAN STATISTICAL SOCIETY 2014/09/29, Vol.44(1), pp.1-23
1. Verfasser: Kamatani, Kengo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a cumulative link model in the Bayesian context, the posterior distribution cannot be obtained in closed form, and we have to resort to an approximation method. A simple data-augmentation strategy is widely used for that purpose but is known to work poorly. The marginal augmentation procedure and the parameter-expanded data-augmentation procedure are considered to be remedies, but such strategies are still not free from poor convergence. In this paper, we propose a kind of the hybrid Markov chain Monte Carlo strategy. To evaluate the efficiency, a local non-degeneracy is introduced, and we also provide a numerical simulation to show the effect.
ISSN:1882-2754
1348-6365
DOI:10.14490/jjss.44.1