Odor Assessment of Automobile Cabin Air With Field Asymmetric Ion Mobility Spectrometry and Photoionization Detection
Odor quality in the cabin air of automobiles can be a significant factor in the decision to purchase a vehicle and the overall customer satisfaction with the vehicle over time. A current standard practice uses a human panel to rate the vehicle cabin odors on intensity, irritation, and pleasantness....
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2016-01, Vol.16 (2), p.409-417 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Odor quality in the cabin air of automobiles can be a significant factor in the decision to purchase a vehicle and the overall customer satisfaction with the vehicle over time. A current standard practice uses a human panel to rate the vehicle cabin odors on intensity, irritation, and pleasantness. However, human panels are expensive, time-consuming, and complicated to administer. To address this issue, we present a machine olfaction approach to assess odors inside automobiles. The approach uses a field asymmetric ion mobility spectrometer and a photoionization detector to measure volatile organic compounds, and a multivariate technique to map sensor data into human ratings. Validation on an experimental dataset of odors from ten different vehicles shows a correlation (0.67-0.84) between model predictions and ground truth from a trained human panel. These results support the feasibility of replacing human panel assessments by objective instrumental means for quality control tasks in the production process. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2015.2478853 |