Adhesion Limits and Design Criteria for Nanorelays
Microelectromechanical switches are of interest for low-power circuit applications due to their minimal OFF state leakage current. This paper uses 22-nm CMOS fabrication technology and the clamped cantilever geometry as the basis for establishing design rules for electrostatic nanorelays and estimat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2016-01, Vol.63 (1), p.465-470 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microelectromechanical switches are of interest for low-power circuit applications due to their minimal OFF state leakage current. This paper uses 22-nm CMOS fabrication technology and the clamped cantilever geometry as the basis for establishing design rules for electrostatic nanorelays and estimates the design parameters needed for nanorelay actuation. The adhesive pull-off force of various substrate/cantilever combinations is simulated using molecular dynamics with a force field that parameterizes van der Waals interactions, and measured using atomic force microscopy. Both methods show that for the substrates studied, H-passivated Si produces the least adhesive surface with adhesive pressure close to the critical pressure required for pull-out. Experimental results quantifying adhesion and electrical current conduction show that it is impossible to simultaneously meet the adhesion and current conduction requirements of a nanorelay. We show that contact adhesion is the key parameter limiting the scalability of electromechanical relays at the nanoscale. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2015.2496155 |