Oxidation and Corrosion Behavior of Nanolaminated MAX-Phase Ti2AlC Film Synthesized by High-Power Impulse Magnetron Sputtering and Annealing

Nanolaminated MAX-phase Ti2AlC thin films were synthesized by high-power impulse magnetron sputtering (HiPIMS) from a MAX-phase Ti2AlC target. The amorphous matrix Ti-Al-C films were deposited at room temperature, while the MAX-phase Ti2AlC films were obtained through annealing process of the as-dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2015-01, Vol.2015 (2015), p.1-12
Hauptverfasser: Kim, Kwang Ho, Wan, Zhixin, Lim, Sung-Hwan, Xia, Qixun, Zhang, Teng Fei, Fu, Jianjian, Lee, Taeg-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanolaminated MAX-phase Ti2AlC thin films were synthesized by high-power impulse magnetron sputtering (HiPIMS) from a MAX-phase Ti2AlC target. The amorphous matrix Ti-Al-C films were deposited at room temperature, while the MAX-phase Ti2AlC films were obtained through annealing process of the as-deposited amorphous matrix films. The microstructure, oxidation resistance, and corrosion behavior of these two films were comparatively investigated. The results indicated that the MAX-phase Ti2AlC films had superior antioxidation and anticorrosion properties than the amorphous matrix Ti-Al-C films, which is attributed to the rapid formation of dense Al2O3 layer on the top of MAX-phase Ti2AlC films because of the rapid diffusion of Al atoms in the typical nanolaminated structure of MAX phase.
ISSN:1687-4110
1687-4129
DOI:10.1155/2015/213128