A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes

For autoregressive count data time series, a goodness‐of‐fit test based on the empirical joint probability generating function is considered. The underlying process is contained in a general class of Markovian models satisfying a drift condition. Asymptotic theory for the test statistic is provided,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2016-01, Vol.37 (1), p.77-98
1. Verfasser: Schweer, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For autoregressive count data time series, a goodness‐of‐fit test based on the empirical joint probability generating function is considered. The underlying process is contained in a general class of Markovian models satisfying a drift condition. Asymptotic theory for the test statistic is provided, including a functional central limit theorem for the non‐parametric estimation of the stationary distribution and a parametric bootstrap method. Connections between the new approach and existing tests for count data time series based on moment estimators appear in limiting scenarios. Finally, the test is applied to a real data set.
ISSN:0143-9782
1467-9892
DOI:10.1111/jtsa.12138