A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes
For autoregressive count data time series, a goodness‐of‐fit test based on the empirical joint probability generating function is considered. The underlying process is contained in a general class of Markovian models satisfying a drift condition. Asymptotic theory for the test statistic is provided,...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 2016-01, Vol.37 (1), p.77-98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For autoregressive count data time series, a goodness‐of‐fit test based on the empirical joint probability generating function is considered. The underlying process is contained in a general class of Markovian models satisfying a drift condition. Asymptotic theory for the test statistic is provided, including a functional central limit theorem for the non‐parametric estimation of the stationary distribution and a parametric bootstrap method. Connections between the new approach and existing tests for count data time series based on moment estimators appear in limiting scenarios. Finally, the test is applied to a real data set. |
---|---|
ISSN: | 0143-9782 1467-9892 |
DOI: | 10.1111/jtsa.12138 |