A Hybrid Trust-Based Recommender System for Online Communities of Practice

The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on learning technologies 2015-10, Vol.8 (4), p.345-356
Hauptverfasser: Zheng, Xiao-Lin, Chen, Chao-Chao, Hung, Jui-Long, He, Wu, Hong, Fu-Xing, Lin, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 4
container_start_page 345
container_title IEEE transactions on learning technologies
container_volume 8
creator Zheng, Xiao-Lin
Chen, Chao-Chao
Hung, Jui-Long
He, Wu
Hong, Fu-Xing
Lin, Zhen
description The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and there is no knowledge authority within the learning environment. This study proposes a hybrid, trust-based recommender system to mitigate above learning issues in online CoPs. A case study was conducted using Stack Overflow data to test the recommender system. Important findings include: (1) comparing with other social community platforms, learners in online CoPs have stronger social relations and tend to interact with a smaller group of people only; (2) the hybrid algorithm can provide more accurate recommendations than celebrity-based and content-based algorithm and; (3) the proposed recommender system can facilitate the formation of personalized learning communities.
doi_str_mv 10.1109/TLT.2015.2419262
format Article
fullrecord <record><control><sourceid>proquest_eric_</sourceid><recordid>TN_cdi_proquest_journals_1750085836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1145000</ericid><ieee_id>7078883</ieee_id><sourcerecordid>3899049891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5fe878c58e9c542bb211754d9122282149e8ab40294f13ff5c1059ff65009d183</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4soOKd3QYSAFy-deUmzJsc5pnMMJlrPpU1fIGNtZ9Ie9t-bURni6T34fe_H44uiW6ATAKqesnU2YRTEhCWg2JSdRSNQXMXAJTv_s19GV95vKZ2yVLFRtJqR5aF0tiKZ630XPxceK_KBuq1rbCp05PPgO6yJaR3ZNDvbIJmHrG9sZ9GT1pB3V-jOaryOLkyx83jzO8fR18simy_j9eb1bT5bx5pL2cXCoEylFhKVFgkrSwaQiqRSwBiTDBKFsigTylRigBsjNFChjJkKSlUFko-jx6F379rvHn2X19Zr3O2KBtve55AqzgQIxQL68A_dtr1rwneBCn1SSD4NFB0o7VrvHZp872xduEMOND_KzYPc_Cg3_5UbTu6HE3RWn_DFCiAJtTTkd0NuEfGUpzSVUnL-A-qBfDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085836</pqid></control><display><type>article</type><title>A Hybrid Trust-Based Recommender System for Online Communities of Practice</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Xiao-Lin ; Chen, Chao-Chao ; Hung, Jui-Long ; He, Wu ; Hong, Fu-Xing ; Lin, Zhen</creator><creatorcontrib>Zheng, Xiao-Lin ; Chen, Chao-Chao ; Hung, Jui-Long ; He, Wu ; Hong, Fu-Xing ; Lin, Zhen</creatorcontrib><description>The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and there is no knowledge authority within the learning environment. This study proposes a hybrid, trust-based recommender system to mitigate above learning issues in online CoPs. A case study was conducted using Stack Overflow data to test the recommender system. Important findings include: (1) comparing with other social community platforms, learners in online CoPs have stronger social relations and tend to interact with a smaller group of people only; (2) the hybrid algorithm can provide more accurate recommendations than celebrity-based and content-based algorithm and; (3) the proposed recommender system can facilitate the formation of personalized learning communities.</description><identifier>ISSN: 1939-1382</identifier><identifier>EISSN: 1939-1382</identifier><identifier>EISSN: 2372-0050</identifier><identifier>DOI: 10.1109/TLT.2015.2419262</identifier><identifier>CODEN: ITLTAT</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Case Studies ; Collaboration ; Collaborative filtering ; Communities ; Communities of Practice ; Community relations ; Comparative Analysis ; Computer Mediated Communication ; Computer Software ; CoP ; Distance learning ; Education ; Educational recommender ; Electronic Learning ; Hybrid systems ; Information Systems ; Knowledge engineering ; Learning ; Metacognition ; Online ; Online services ; Programming ; Recommender systems ; Social Networks ; Stack Overflow ; Trust (Psychology) ; Trust management ; Trust-based algorithm</subject><ispartof>IEEE transactions on learning technologies, 2015-10, Vol.8 (4), p.345-356</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct-Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5fe878c58e9c542bb211754d9122282149e8ab40294f13ff5c1059ff65009d183</citedby><cites>FETCH-LOGICAL-c388t-5fe878c58e9c542bb211754d9122282149e8ab40294f13ff5c1059ff65009d183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7078883$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1145000$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Xiao-Lin</creatorcontrib><creatorcontrib>Chen, Chao-Chao</creatorcontrib><creatorcontrib>Hung, Jui-Long</creatorcontrib><creatorcontrib>He, Wu</creatorcontrib><creatorcontrib>Hong, Fu-Xing</creatorcontrib><creatorcontrib>Lin, Zhen</creatorcontrib><title>A Hybrid Trust-Based Recommender System for Online Communities of Practice</title><title>IEEE transactions on learning technologies</title><addtitle>TLT</addtitle><description>The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and there is no knowledge authority within the learning environment. This study proposes a hybrid, trust-based recommender system to mitigate above learning issues in online CoPs. A case study was conducted using Stack Overflow data to test the recommender system. Important findings include: (1) comparing with other social community platforms, learners in online CoPs have stronger social relations and tend to interact with a smaller group of people only; (2) the hybrid algorithm can provide more accurate recommendations than celebrity-based and content-based algorithm and; (3) the proposed recommender system can facilitate the formation of personalized learning communities.</description><subject>Algorithms</subject><subject>Case Studies</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Communities</subject><subject>Communities of Practice</subject><subject>Community relations</subject><subject>Comparative Analysis</subject><subject>Computer Mediated Communication</subject><subject>Computer Software</subject><subject>CoP</subject><subject>Distance learning</subject><subject>Education</subject><subject>Educational recommender</subject><subject>Electronic Learning</subject><subject>Hybrid systems</subject><subject>Information Systems</subject><subject>Knowledge engineering</subject><subject>Learning</subject><subject>Metacognition</subject><subject>Online</subject><subject>Online services</subject><subject>Programming</subject><subject>Recommender systems</subject><subject>Social Networks</subject><subject>Stack Overflow</subject><subject>Trust (Psychology)</subject><subject>Trust management</subject><subject>Trust-based algorithm</subject><issn>1939-1382</issn><issn>1939-1382</issn><issn>2372-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkMFLwzAUh4soOKd3QYSAFy-deUmzJsc5pnMMJlrPpU1fIGNtZ9Ie9t-bURni6T34fe_H44uiW6ATAKqesnU2YRTEhCWg2JSdRSNQXMXAJTv_s19GV95vKZ2yVLFRtJqR5aF0tiKZ630XPxceK_KBuq1rbCp05PPgO6yJaR3ZNDvbIJmHrG9sZ9GT1pB3V-jOaryOLkyx83jzO8fR18simy_j9eb1bT5bx5pL2cXCoEylFhKVFgkrSwaQiqRSwBiTDBKFsigTylRigBsjNFChjJkKSlUFko-jx6F379rvHn2X19Zr3O2KBtve55AqzgQIxQL68A_dtr1rwneBCn1SSD4NFB0o7VrvHZp872xduEMOND_KzYPc_Cg3_5UbTu6HE3RWn_DFCiAJtTTkd0NuEfGUpzSVUnL-A-qBfDM</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Zheng, Xiao-Lin</creator><creator>Chen, Chao-Chao</creator><creator>Hung, Jui-Long</creator><creator>He, Wu</creator><creator>Hong, Fu-Xing</creator><creator>Lin, Zhen</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers, Inc</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>A Hybrid Trust-Based Recommender System for Online Communities of Practice</title><author>Zheng, Xiao-Lin ; Chen, Chao-Chao ; Hung, Jui-Long ; He, Wu ; Hong, Fu-Xing ; Lin, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5fe878c58e9c542bb211754d9122282149e8ab40294f13ff5c1059ff65009d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Case Studies</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Communities</topic><topic>Communities of Practice</topic><topic>Community relations</topic><topic>Comparative Analysis</topic><topic>Computer Mediated Communication</topic><topic>Computer Software</topic><topic>CoP</topic><topic>Distance learning</topic><topic>Education</topic><topic>Educational recommender</topic><topic>Electronic Learning</topic><topic>Hybrid systems</topic><topic>Information Systems</topic><topic>Knowledge engineering</topic><topic>Learning</topic><topic>Metacognition</topic><topic>Online</topic><topic>Online services</topic><topic>Programming</topic><topic>Recommender systems</topic><topic>Social Networks</topic><topic>Stack Overflow</topic><topic>Trust (Psychology)</topic><topic>Trust management</topic><topic>Trust-based algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiao-Lin</creatorcontrib><creatorcontrib>Chen, Chao-Chao</creatorcontrib><creatorcontrib>Hung, Jui-Long</creatorcontrib><creatorcontrib>He, Wu</creatorcontrib><creatorcontrib>Hong, Fu-Xing</creatorcontrib><creatorcontrib>Lin, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on learning technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiao-Lin</au><au>Chen, Chao-Chao</au><au>Hung, Jui-Long</au><au>He, Wu</au><au>Hong, Fu-Xing</au><au>Lin, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1145000</ericid><atitle>A Hybrid Trust-Based Recommender System for Online Communities of Practice</atitle><jtitle>IEEE transactions on learning technologies</jtitle><stitle>TLT</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>8</volume><issue>4</issue><spage>345</spage><epage>356</epage><pages>345-356</pages><issn>1939-1382</issn><eissn>1939-1382</eissn><eissn>2372-0050</eissn><coden>ITLTAT</coden><abstract>The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and there is no knowledge authority within the learning environment. This study proposes a hybrid, trust-based recommender system to mitigate above learning issues in online CoPs. A case study was conducted using Stack Overflow data to test the recommender system. Important findings include: (1) comparing with other social community platforms, learners in online CoPs have stronger social relations and tend to interact with a smaller group of people only; (2) the hybrid algorithm can provide more accurate recommendations than celebrity-based and content-based algorithm and; (3) the proposed recommender system can facilitate the formation of personalized learning communities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TLT.2015.2419262</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1382
ispartof IEEE transactions on learning technologies, 2015-10, Vol.8 (4), p.345-356
issn 1939-1382
1939-1382
2372-0050
language eng
recordid cdi_proquest_journals_1750085836
source IEEE Electronic Library (IEL)
subjects Algorithms
Case Studies
Collaboration
Collaborative filtering
Communities
Communities of Practice
Community relations
Comparative Analysis
Computer Mediated Communication
Computer Software
CoP
Distance learning
Education
Educational recommender
Electronic Learning
Hybrid systems
Information Systems
Knowledge engineering
Learning
Metacognition
Online
Online services
Programming
Recommender systems
Social Networks
Stack Overflow
Trust (Psychology)
Trust management
Trust-based algorithm
title A Hybrid Trust-Based Recommender System for Online Communities of Practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_eric_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Trust-Based%20Recommender%20System%20for%20Online%20Communities%20of%20Practice&rft.jtitle=IEEE%20transactions%20on%20learning%20technologies&rft.au=Zheng,%20Xiao-Lin&rft.date=2015-10-01&rft.volume=8&rft.issue=4&rft.spage=345&rft.epage=356&rft.pages=345-356&rft.issn=1939-1382&rft.eissn=1939-1382&rft.coden=ITLTAT&rft_id=info:doi/10.1109/TLT.2015.2419262&rft_dat=%3Cproquest_eric_%3E3899049891%3C/proquest_eric_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750085836&rft_id=info:pmid/&rft_ericid=EJ1145000&rft_ieee_id=7078883&rfr_iscdi=true