A Hybrid Trust-Based Recommender System for Online Communities of Practice

The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on learning technologies 2015-10, Vol.8 (4), p.345-356
Hauptverfasser: Zheng, Xiao-Lin, Chen, Chao-Chao, Hung, Jui-Long, He, Wu, Hong, Fu-Xing, Lin, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and there is no knowledge authority within the learning environment. This study proposes a hybrid, trust-based recommender system to mitigate above learning issues in online CoPs. A case study was conducted using Stack Overflow data to test the recommender system. Important findings include: (1) comparing with other social community platforms, learners in online CoPs have stronger social relations and tend to interact with a smaller group of people only; (2) the hybrid algorithm can provide more accurate recommendations than celebrity-based and content-based algorithm and; (3) the proposed recommender system can facilitate the formation of personalized learning communities.
ISSN:1939-1382
1939-1382
2372-0050
DOI:10.1109/TLT.2015.2419262