A linear time algorithm for optimal k-hop dominating set of a tree
We give a linear time algorithm to compute an optimal (minimum) k-hop dominating set D of a tree T for k≥1. This extends the previous result for an optimal 1-dominating set for trees. We use a rooted form T¯ of T, with an arbitrary node selected as the root, to direct the search for nodes of D in a...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2016-02, Vol.116 (2), p.197-202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a linear time algorithm to compute an optimal (minimum) k-hop dominating set D of a tree T for k≥1. This extends the previous result for an optimal 1-dominating set for trees. We use a rooted form T¯ of T, with an arbitrary node selected as the root, to direct the search for nodes of D in a bottom–up fashion. The decision whether to include a node x in D or not is based on the subtree of T¯ at x. Optimal k-hop dominating sets have many important practical applications. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2015.07.014 |