Two-dimensional Magnetism in [Kappa]-(BEDT-TTF)^sub 2^Cu[N(CN)^sub 2^]Cl, a Spin-1/2 Heisenberg Antiferromagnet with Dzyaloshinskii-Moriya Interaction
The finite phase transition temperature, T..., of quasi two-dimensional (2D) Heisenberg antiferromagnetic (AF) crystals results from in-plane anisotropy or coupling between layers. It is usually not known which is the determining factor when both are weak. We show by an electron spin resonance exper...
Gespeichert in:
Veröffentlicht in: | Journal of the Physical Society of Japan 2015-12, Vol.84 (12), p.1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The finite phase transition temperature, T..., of quasi two-dimensional (2D) Heisenberg antiferromagnetic (AF) crystals results from in-plane anisotropy or coupling between layers. It is usually not known which is the determining factor when both are weak. We show by an electron spin resonance experiment that in the quasi 2D antiferromagnetic crystal, ..., T... is determined by in-plane anisotropy while interlayer coupling plays a minor role. The compound has a large isotropic Heisenberg exchange interaction between sites with S = 1/2 spins. The Dzyaloshinskii-Moriya (DM) interaction is the main source of anisotropy, while in-plane anisotropy and the interlayer coupling are very weak. The external-field field-induced static and fluctuating AF magnetizations are independent in adjacent layers above the (zero-field) ordering temperature. (ProQuest: ... denotes formulae/symbols omitted.) |
---|---|
ISSN: | 0031-9015 1347-4073 |