On Pattern Avoiding Flattened Set Partitions

Let Π = B1/B2/… /Bk be any set partition of[n]= {1,2,...,n} satisfying that entries are increasing in each block and blocks are arranged in increasing order of their first entries.Then Callan defined the flattened Π to be the permutation of[n]obtained by erasing the divers between its blocks,and Cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2015-12, Vol.31 (12), p.1923-1928
Hauptverfasser: Liu, Thomas Y. H., Zhang, Andy Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Π = B1/B2/… /Bk be any set partition of[n]= {1,2,...,n} satisfying that entries are increasing in each block and blocks are arranged in increasing order of their first entries.Then Callan defined the flattened Π to be the permutation of[n]obtained by erasing the divers between its blocks,and Callan also enumerated the number of set partitions of[n]whose flattening avoids a single3-letter pattern.Mansour posed the question of counting set partitions of[n]whose flattening avoids a pattern of length 4.In this paper,we present the number of set partitions of[n]whose flattening avoids one of the patterns:1234,1243,1324,1342,1423,1432,3142 and 4132.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-015-5153-0