Power Efficient High-Level Synthesis by Centralized and Fine-Grained Clock Gating

Nowadays, power is a primary concern in digital circuits and clock distribution networks are particularly a significant power consumer. Therefore, clock gating is an effective technique in saving dynamic power by reducing the switching activities. In this paper, we propose a centralized and fine-gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2015-12, Vol.34 (12), p.1954-1963
Hauptverfasser: Riahi Alam, Mohsen, Ersali Salehi Nasab, Mostafa, Fakhraie, Sied Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, power is a primary concern in digital circuits and clock distribution networks are particularly a significant power consumer. Therefore, clock gating is an effective technique in saving dynamic power by reducing the switching activities. In this paper, we propose a centralized and fine-grained microarchitecture-level clock gating for low power hardware accelerators which are automatically designed by high-level synthesis (HLS) tool. The basic principium of our idea is not to use any extra computation for generating clock enabled signals and exploit exiting signals of finite state machine for controlling the datapath clock network. After determining the current state in finite state machine, clock sub-tree of current state is enabled and the other sub-trees are disabled with a slight increase in circuit area. Our approach is implemented within an HLS design flow for automatic low power hardware accelerator generation in application specific integrated circuit design. Experimental results are obtained on a set of representative benchmark programs. Depending on the circuit size and number of registers, it is shown that 47%-86% reduction in power dissipation is observed.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2015.2445734