Measurement of coupling forces at the power tool handle-hand interface
This study explored a low-cost system for measurement of coupling forces imposed by the hand on a handle under static and dynamic conditions, and its feasibility for applications to hand-held power tools. The properties of thin-film, flexible and trim-able resistive sensors (FlexiForce) were explore...
Gespeichert in:
Veröffentlicht in: | International journal of industrial ergonomics 2015-11, Vol.50, p.105-120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study explored a low-cost system for measurement of coupling forces imposed by the hand on a handle under static and dynamic conditions, and its feasibility for applications to hand-held power tools. The properties of thin-film, flexible and trim-able resistive sensors (FlexiForce) were explored in view of their applicability for measurements of the hand-handle interface forces. The sensors showed very good linearity, while considerable differences were evident in the sensitivity amongst different sensors. The appropriate locations of the sensors on the handle surface were subsequently determined on the basis of the hand-handle geometry and reported force distributions. The validity of the measurement system was investigated for measuring the hand grip and push forces with eight subjects grasping five different stationary instrumented handles (cylindrical: 32, 38 and 43 mm diameter; and elliptical: 32 × 38 and 38 × 44 mm) considering two different positions of the sensors on the handle. The validity of the measurement system was also investigated under vibration for the 38 and 43 mm diameter cylindrical handles. The results showed good linearity and repeatability of the sensors for all subjects and handles under static as well as vibration conditions, while the sensors' outputs differed for each handle. The feasibility of the measurement system was also examined for measurements of hand forces on a power chisel hammer handle. The evaluations were conducted with three subjects grasping the power chisel handle under stationary as well as vibrating conditions, and different combinations of hand grip, push and coupling forces. The measurements revealed very good correlations between the hand forces estimated from the FlexiForce sensors and the reference values for the stationary as well as the vibrating tool.
The measurement of hand-handle interface forces is vital for assessing the hand-transmitted vibration exposure and musculoskeletal loads. The low cost and flexible sensors, proposed in the study, could be conveniently applied to the curved surfaces of real power tool handles in the field to measure hand grip and push forces, and the forces exerted on the palm and the fingers. The most significant benefits of the sensors lie with its minimal cost and applicability to the real tool handles.
•A low-cost and flexible system is proposed for acquiring hand grip and push forces in a static as well dynamic environment.•Static and dynamic properties, and the |
---|---|
ISSN: | 0169-8141 1872-8219 |
DOI: | 10.1016/j.ergon.2015.09.013 |