Probabilistic Class Histogram Equalization Based on Posterior Mean Estimation for Robust Speech Recognition
In this letter, we propose a new probabilistic class histogram equalization technique for noise robust speech recognition. To cope with the sparse data problem which is common in the case of short test data, the proposed histogram equalization technique employs the posterior mean estimator, a kind o...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-12, Vol.22 (12), p.2421-2424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a new probabilistic class histogram equalization technique for noise robust speech recognition. To cope with the sparse data problem which is common in the case of short test data, the proposed histogram equalization technique employs the posterior mean estimator, a kind of the Bayesian estimator, for test CDF. Experiments on the Aurora-4 framework showed that the proposed method produces performance improvement over the conventional maximum likelihood estimation-based approach. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2015.2490202 |