Estimating Conditional Average Treatment Effects

We consider a functional parameter called the conditional average treatment effect (CATE), designed to capture the heterogeneity of a treatment effect across subpopulations when the unconfoundedness assumption applies. In contrast to quantile regressions, the subpopulations of interest are defined i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2015-10, Vol.33 (4), p.485-505
Hauptverfasser: Abrevaya, Jason, Hsu, Yu-Chin, Lieli, Robert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a functional parameter called the conditional average treatment effect (CATE), designed to capture the heterogeneity of a treatment effect across subpopulations when the unconfoundedness assumption applies. In contrast to quantile regressions, the subpopulations of interest are defined in terms of the possible values of a set of continuous covariates rather than the quantiles of the potential outcome distributions. We show that the CATE parameter is nonparametrically identified under unconfoundedness and propose inverse probability weighted estimators for it. Under regularity conditions, some of which are standard and some are new in the literature, we show (pointwise) consistency and asymptotic normality of a fully nonparametric and a semiparametric estimator. We apply our methods to estimate the average effect of a first-time mother's smoking during pregnancy on the baby's birth weight as a function of the mother's age. A robust qualitative finding is that the expected effect becomes stronger (more negative) for older mothers.
ISSN:0735-0015
1537-2707
DOI:10.1080/07350015.2014.975555