Stability of Silicon Carbide Particle Detector Performance at Elevated Temperatures
The alpha spectroscopy performance and electric current stability of 4H-silicon carbide Schottky devices with 50 μm epitaxial layer was examined at temperatures between 300 to 500 K at 50 K intervals. An activation energy of 5.98 ±0.64 meV was extracted from temperature dependent resistivity measure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2015-10, Vol.62 (5), p.2360-2366 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The alpha spectroscopy performance and electric current stability of 4H-silicon carbide Schottky devices with 50 μm epitaxial layer was examined at temperatures between 300 to 500 K at 50 K intervals. An activation energy of 5.98 ±0.64 meV was extracted from temperature dependent resistivity measurements. The Schottky barrier height decreases from 1.33 eV at 300 K to 1.11 eV at 500 K and the ideality factor increases from 1.17 at 300 K to 1.79 at 500 K. The reverse bias leakage currents stabilizes faster at higher temperatures. The charge collection efficiency is above 90% for temperatures up to 500 K. Pulse height spectra collected for 24 hours at constant voltage and temperature show improvements with time within the first 8 hours and remained stable for the remainder of the acquisition time. The peak width of the alpha spectra reduces significantly with increasing temperature at applied bias voltages below 50 V, which indicates that leakage currents are not the limiting factor in those conditions even at 500 K in our set up. So far, the devices indicate reasonable stability for extended periods of operation and highlight possible applications in harsh radiation media. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2015.2475421 |