X-ray spectroscopy for chemistry in the 2-4keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in [gamma]-Al2O3

The 2-4keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2015-11, Vol.22 (6), p.1426
Hauptverfasser: Thompson, Paul B J, Nguyen, Bao N, Nicholls, Rachel, Bourne, Richard A, Brazier, John B, Lovelock, Kevin R J, Brown, Simon D, Wermeille, Didier, Bikondoa, Oier, Lucas, Christopher A, Hase, Thomas P A, Newton, Mark A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 2-4keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4-5keV, there are relatively few resources available for X-ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X-ray energies due to restrictions imposed by the lower energies of the X-rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X-ray spectrum. In this report the resulting performance of this resource for X-ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K-edge in ionic liquids; quantification of dilution limits at the Cl K- and Rh L3-edges and structural equilibria in solution; in vacuum deposition and reduction of [RhI(CO)2Cl]2 to [gamma]-Al2O3; contamination of [gamma]-Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated.
ISSN:0909-0495
1600-5775
DOI:10.1107/S1600577515016148